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Abstract

The work is motivated by the papers [Ba1], [Ba2], [Ba7], [Ba11], [Be] and [Be-Tu]. In particular,
the strong homology groups of continuous maps were defined and studied in [Be] and [Be-Tu].
To show that the given groups are a homology type functor, it was required to construct a
corresponding shape category. In this paper, we study this very problem. In particular, using
the methods developed in [Ba7], [Ma3], the strong shape theory of continuous maps of compact
metric spaces, the so-called strong fiber shape theory is constructed.

2010 Mathematics Subject Classification. 54C56. 55P55.
Keywords. fiber resolution, strong fiber expansion, fiber strong shape.

Introduction

The idea of the expansion of a map into the inverse or direct system consisting of good maps has been
successfully used by various mathematicians to solve various problems of general topology, geometric
topology and algebraic topology [Ba7], [Ba-Ts], [Ed-Tu], [Ka], [Ma1], [Ma2], [Ma3], [Ya]. Using the
idea of the papers [Ba1] - [Ba11], [Ed-Tu], [Ka], [Ma1], [Ma2] continuous maps are investigated
from the point of view of homology and homotopy theories. Applying the (co)shape properties of
continuous maps, functors from the category of maps of topological spaces to the category of long
exact sequences of groups were considered by V.Baladze [Ba11]. On the other hand, the projective
and the strong homology groups of continuous maps of compact metric spaces were defined in the
papers [Ba12], [Be]. The connection between the spectral and strong homology groups of maps
was studied in the paper [Be-Tu]. Our further purpose is axiomatic characterization of it, without
relative strong homology groups, in the sense of Hu [Hu]. In this case, the theory of inverse systems
plays an important role. Consequently, the main aim of this paper is to develop fiber strong shape
theory of continuous maps.

We construct the fiber strong shape classification of maps using the methods of inverse sys-
tem theory. It consists of approximation of maps by maps of ANR-spaces. There exist an-
other approaches to fiber strong shape theory, which are analogous to the technique considered
in [Bat1], [Bat2], [Cat-Seg1], [Cat-Seg2], [Dyd-Now], [Gun1], [Gun1], [Por] and lead to equivalent
theories. In this paper we use the method of Mardešić-Lisica [Ma3], which is more geometric and
is connected to construction of strong homology groups.

As it is known, in the process of constructing the general shape category of topological spaces,
the main step is to show that any resolution of the space is an expansion of the given space.
For constructing the strong shape theory of topological spaces, it is an important fact that any
resolution of the space is a strong expansion and any strong expansion is a coherent expansion
[Ma1], [Ma2], [Ma3]. In the paper [Ba7] the fiber resolution and fiber expansion of continuous maps
is defined and it is shown that any fiber resolution is a fiber expansion. In this paper we will define
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a strong fiber expansion. We will modify some lemmas and theorems of [Ba7], [Ma1], [Ma2] and
will show that any fiber resolution is a strong fiber expansion. Besides, we will prove an analogous
lemma of the main lemma on strong expansions [Ma1]. Using the obtained results and methods
of strong shape theory, we will construct a strong fiber shape category of maps of compact metric
spaces.

In this paper we will use the following notations and notions.

Let Top be the category of topological spaces and continuous maps. Denote by MORTop the
category of morphisms of the category Top. Therefore, any continuous map f : X → X ′ is an
object of the category MORTop and if f : X → X ′ and g : Y → Y ′ are two objects of this category,
then a pair (ϕ,ϕ′) of continuous maps ϕ : X → Y and ϕ′ : X ′ → Y ′ is a morphism of MORTop

if the condition f ′ ◦ ϕ = ϕ′ ◦ f is fulfilled. Let CM be the category of compact metric spaces and
continuous maps. Denote by MORCM the full subcategory of the category MORTop objects of
which are continuous maps of compact metric spaces. In the case of the category M of metric
spaces, MORM denotes the corresponding full subcategory of the category MORTop.

Two morphisms (ϕ,ϕ′), (ψ.ψ′) : f → f ′ of the category MORTop are called homotopic if there
is a morphism

(Θ,Θ′) : f × 1I → f ′ (0.1)

such that Θ is a homotopy from ϕ to ψ and Θ′ is a homotopy from ϕ′ to ψ′ [Ba7].

A submap of a map f : X → X ′ is a map g : A→ A′, where A ⊂ X, A′ ⊂ X ′ and f|A = g. The
submap is called closed (open) if A and A′ are closed (open) subspaces of X and X ′, respectively
[Ba7].

Let g : A → A′ be a submap of a map f : X → X ′ and (ϕ,ϕ′) : f → g be a morphism. The
pair (ϕ|A, ϕ

′
|A′) of restrictions ϕ|A : A→ Y and ϕ′|A′ : A′ → Y ′ is called a restriction of morphism

(ϕ,ϕ′) on the submap g : A→ A′ and this pair is denoted by (ϕ,ϕ′)|g [Ba7].

A morphism (i, i′) : g → f is said to be an embedding. If i : A→ X and i′ : A′ → X ′ are both
embeddings. If both i : A→ X and i′ : A′ → X ′ are closed maps, then (i, i′) : g → f is said to be
a closed embedding [Ba7].

A morphism (ϕ,ϕ′) : f → g is said to be constant if ϕ : X → Y and ϕ′ : X ′ → Y ′ are constant
maps [Ba7].

Let g : A → A′ be a submap of a map f : X → X ′. A submap fU : U → U ′ of a map f is
said to be a neighborhood of g in f , if U is an open neighborhood of A in X and U ′ is an open
neighborhood of A′ in X ′ [Ba7].

Let g : A → A′ be a submap of a map f : X → X ′ and (ϕ,ϕ′) : g → h be a morphism. A
morphism (ϕ̃, ϕ̃′) : f → h is said to be an extension of (ϕ,ϕ′), if (ϕ̃, ϕ̃′)|g = (ϕ,ϕ′) [Ba7].
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Let (i, i′) : g → f be an embedding. The g is said to be a retract of f provided that there exists
a morphism (r, r′) : f → g such that (r, r′) ◦ (i, i′) = (1X , 1X′) [Ba7].

A submap g is said to be a neighborhood retract of f , if it is a retract of some neighborhood
fU of g in f [Ba7].

A map f : X → X ′ of the category MORM is said to be an absolute retract for the category
MORM, if for each closed embedding (i, i′) : g → f ∈ MORM there exists a retraction (r, r′) :
f → (i, i′)(g) [Ba7].

A map f : X → X ′ of the category MORM is said to be an absolute neighborhood retract
for the category MORM, if for each closed embedding (i, i′) : g → f ∈ MORM there exists a
neighborhood fU : U → U ′ of (i, i′)(g) in f and a retraction (r, r) : fU → (i, i′)(g) [Ba7].

Let AR(MORM) and ANR(MORM) be the category of all absolute retracts and all absolute
neighborhood retracts for the category MORM, respectively. Note that if f ∈ A(N)R(MORM),
then f is called an A(N)R(MORM)-map. From now, we call an A(N)R(MORM)-map an
A(N)R-map.

1 Fiber resolution and strong fiber expansion of a continuous map

Let f =
{
fλ,
(
pλ,λ′ , p

′
λ,λ′

)
,Λ
}

be an inverse system in the category MorTop of continuous

maps of topological spaces. Let f = {f} be a rudimentary system whose term is just only a map
f : X → X ′.

Definition 1.1. (see [Ba7]) A fiber resolution of a map f is a morphism (p,p′) = {(pλ, p′λ)} : f → f
of the category pro−MorTop which for any ANR-map t : P → P ′ and a pair (α, α′) of coverings
α ∈ Cov (P ) and α′ ∈ Cov (P ′), satisfies the following two conditions:

FR1) for every morphism (ϕ,ϕ′) : f → t there exist λ ∈ Λ and a morphism (ϕλ, ϕ
′
λ) : fλ → t

such that (ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ) and (ϕ,ϕ′) are (α, α′)-near;

FR2) there exists a pair (β, β′) of coverings β ∈ Cov (P ) and β′ ∈ Cov (P ′) with the following
property: if λ ∈ Λ and (ϕλ, ϕ

′
λ) , (ψλ, ψ

′
λ) : fλ → t are morphisms such that the morphisms

(ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ) and (ψλ, ψ

′
λ) ◦ (pλ, p

′
λ) are (β, β′)-near, then there exists a λ′ ≥ λ such that

(ϕλ, ϕ
′
λ) ◦ (pλλ′ , p

′
λλ′) and (ψλ, ψ

′
λ) ◦ (pλλ′ , p

′
λλ′) are (α, α′)-near.

If in a fiber resolution (p,p′) : f → f each fλ is an ANR-map, then this fiber resolution is
called and ANR-resolution.

In the paper [Ba7] it is shown that any continuous map admits an ANR-fiber resolution (see
theorem 3.2 of [Ba7]). In this section our aim is to define a strong fiber expansion of a continuous
map and to prove that any ANR-fiber resolution is a strong fiber expansion. For this aim we need
some modification of lemma 3.4 of [Ba7] and analogous result of lemma 1 of [Ma1].

Definition 1.2. We will say that a morphism (p,p′) = {(pλ, p′λ) } : f → f of the category
pro−MorTop is a strong fiber expansion of a continuous map f : X → X ′, if for every ANR-map
t : P → P ′ the following conditions are fulfilled:
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SF1) for every morphism (ϕ,ϕ′) : f → t there exist λ ∈ Λ and a morphism (ϕλ, ϕ
′
λ) : fλ → t

such that
(ϕ,ϕ′) ∼= (ϕλ, ϕ

′
λ) ◦ (pλ, p

′
λ) . (1.1)

SF2) if λ ∈ Λ and (ϕλ, ϕ
′
λ) , (ψλ, ψ

′
λ) : fλ → t are morphisms such that the morphisms (ϕλ, ϕ

′
λ)◦

(pλ, p
′
λ) and (ψλ, ψ

′
λ) ◦ (pλ, p

′
λ) are connected by a fiber homotopy (Θ,Θ′) : f × 1I → t, then there

exist a λ′ ≥ λ and fiber homotopies (∆,∆′) : fλ × 1I → t and (Γ,Γ′) : f × 1I × 1I → t such that
the homotopy (∆,∆′) connects the morphisms (ϕλ, ϕ

′
λ) ◦ (pλλ′ , p

′
λλ′) and (ψλ, ψ

′
λ) ◦ (pλλ′ , p

′
λλ′) and

the homotopy (Γ,Γ′) connects (Θ,Θ′) and (∆,∆′) ◦ (pλ × 1I , p
′
λ × 1I) and is fixed on the submap

f × 1∂I : X × 1∂I → X ′ × 1∂I .

Let C (Z,P ) be the space of all continuous functions from Z to P endowed with the compact-
open topology. For any continuous map t : P → P ′ and any topological space Z denote by
t# : C (Z,P )→ C (Z,P ′) the map which is defined by the formula

t# (f) = t ◦ f, ∀ f ∈ C (Z,P ) . (1.2)

Proposition 1.3. Let t : P → P ′ be an ANR-map and let Z be a compact metric space. Then
the map t# : C (Z,P )→ C (Z,P ′) is an ANR-map.

This proposition is proved in [Ba7].

Lemma 1.4. Let f : X → X ′ be a map of topological spaces, t′ : P1 → P
′

1, t : P → P ′ be
ANR-maps. If (ζ, ζ ′) : f → t′, (ξ, ξ′) , (η, η′) : t′ → t are morphisms and (Θ,Θ′) : f × 1I → t
is a homotopy which connects the morphisms (ξ, ξ′) ◦ (ζ, ζ ′) and (η, η′) ◦ (ζ, ζ ′), then there exist
an ANR-map t′′ : P2 → P

′

2, a morphism (σ, σ′) : f → t′′, (κ, κ′) : t′′ → t′ and a fiber homotopy
(∆,∆′) : t′′ × 1I → t such that

(ζ, ζ ′) = (κ, κ′) ◦ (σ, σ′) , (1.3)

(∆,∆′) : (ξ, ξ′) ◦ (κ, κ′) ∼= (η, η′) ◦ (κ, κ′) , (1.4)

(Θ,Θ′) = (∆,∆′) ◦
(
σ × 1I , σ

′

1 × 1I

)
. (1.5)

Note that lemma 1.4 without (1.5) is proved in [Ba7]. The fiber homotopy (∆,∆′) : t′′× 1I → t
is constructed there as well. So we just check that (1.5) is fulfilled.

Proof. Consider the ANR-map t# : C (I, P ) → C (I, P ′) and define a morphism (µ, µ′) : f → t#

by
µ (x) (t) = Θ (x, t) , ∀ x ∈ X, t ∈ I, (1.6)

µ′ (x′) (t) = Θ′ (x′, t) , ∀ x′ ∈ X ′, t ∈ I. (1.7)

In this case t# ◦ µ = µ′ ◦ f [Ba7] . Now define a morphism (σ, σ′) : f → t′ × t# by

σ (x) = (ζ (x) , µ (x)) ∀ x ∈ X, (1.8)

σ′ (x′) = (ζ ′ (x′) , µ′ (x′) ) ∀ x′ ∈ X ′. (1.9)

It is shown that
(
t′ × t#

)
◦ σ = σ′ ◦ f [Ba7].

Consider the projections κ : P1×C (I, P )→ P1, κ′ : P
′

1×C (I, P ′)→ P
′

1 and the corresponding
morphism (κ, κ′) : t′ × t# → t′ [Ba7].
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Let
P2 = {(y, ϕ) ∈ P1 × C (I, P ) |ϕ (0) = ξ (y) , ϕ (1) = ξ (y)} , (1.10)

P
′

2 =
{

(z, ψ) ∈ P
′

1 × C (I, P ′) |ψ (0) = ξ′ (y) , ψ (1) = ξ′ (y)
}
. (1.11)

In the paper [Ba7] it is shown that
(
t′ × t#

)
(P2) ⊂ P

′

2 and the sets σ (X) and σ′ (X ′) are the

subsets of P2 and P
′

2, respectively. Consider the restrictions

t” =
(
t′ × t#

)
|P2

: P2 → P
′

2, (1.12)

(κ, κ′) = (κ, κ′)|t” : t”→ t′. (1.13)

Let (∆,∆′) = t”× 1I → t′ be given by

∆ ((y, ϕ) , t) = ϕ (t) , ∀ (y, ϕ) ∈ P2, (1.14)

∆′ ((z, ψ) , t) = ψ (t) , ∀ (z, ψ) ∈ P
′

2. (1.15)

Our aim is to show that (1.5) is fulfilled. Indeed,

∆ ◦ (σ × 1I) (x, t) = ∆ (σ (x) , t) = ∆ ((ζ (x) , µ (x)) , t) = µ (x) (t) = Θ (x, t) , (1.16)

∆′ ◦ (σ′ × 1I) (x′, t) = ∆′ (σ′ (x′) , t) = ∆′ ((ζ ′ (x′) , µ′ (x′)) , t) = µ′ (x′) (t) = Θ′ (x′, t) . (1.17)

q.e.d.

Theorem 1.5. Let t : P → P ′ be an ANR-map. Then every pair (α, α′) of coverings α and α′ of
P and P ′, respectively, admits a pair (β, β′) of coverings of P and P ′, respectively, such that for any
two (α, α′)-near morphisms (ϕ,ϕ′) , (ψ,ψ′) : f → t from a map f : X → X ′ of arbitrary topological
spaces into t : P → P ′, there exists a (β, β′)-homotopy (Θ,Θ′) : (ϕ,ϕ′) ∼= (ψ,ψ′). Moreover, if for
a given point x ∈ X, ϕ (x) = ψ (x) , then

(Θ,Θ′)|f|{x}×1I
: f|{x} × 1I → t (1.18)

is constant.

This theorem is proved in [Ba7].
Let Z be a topological space and γ be an open covering of it. For each W ∈ γ let JW be an

open covering of the unit interval I. In this case γ̃ = {W × J |W ∈ γ, J ∈ JW } is an open covering
of Z × I which is called a stacked covering [Ma2].

Lemma 1.6. Let Z be a normal space and let γ̃ = {W × J |W ∈ γ, J ∈ JW } be a stacked covering
of Z × I, where γ is locally finite and each JW , W ∈ γ is finite. If for each W ∈ γ, consider a fixed
real number aW > 0, then there exists a continuous function ϕ : Z → I such that every z ∈ Z
admits a W ∈ γ such that

z ∈W, 0 < ϕ (z) ≤ aW . (1.19)

This lemma is proved in [Ma2].
Now according to [Ma2] we will formulate and prove the following:
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Lemma 1.7. Let (p,p′) = {(pλ, p′λ) } : f → f be a fiber resolution and let λ ∈ Λ, t : P → P ′ be
a continuous map, (ϕλ, ϕ

′
λ) , (ψλ, ψ

′
λ) : fλ → t be morphisms and (Θ,Θ′) : f × 1I → t be a fiber

homotopy between (ϕλ, ϕ
′
λ)◦(pλ, p′λ) and (ψλ, ψ

′
λ)◦(pλ, p′λ). Then for every pair (α, α′) of coverings

α ∈ Cov (P ) and α′ ∈ Cov (P ′), there exist λ′ ≥ λ and a fiber homotopy (∆,∆′) : fλ′ × 1I → t
such that

(∆,∆′) : (ϕλ, ϕ
′
λ) ◦ (pλλ′ , p

′
λλ′)
∼= (ψλ, ψ

′
λ) ◦ (pλλ′ , p

′
λλ′) , (1.20)

((Θ,Θ′) , (∆,∆′) ◦ (pλ × 1I , p
′
λ × 1I)) ≤ (α, α′) . (1.21)

Proof. For the resolution (p,p′) = {(pλ, p′λ) } : f → f and for the morphisms (ϕλ, ϕ
′
λ) , (ψλ, ψ

′
λ) :

fλ → t consider the corresponding homotopy (Θ,Θ′) : f × 1I → t. i.e.

Θ (x, 0) = ϕλpλ (x) , ∀x ∈ X, (1.22)

Θ (x, 1) = ψλpλ (x) , ∀x ∈ X, (1.23)

Θ′ (x′, 0) = ϕ′λp
′
λ (x′) , ∀x′ ∈ X ′, (1.24)

Θ (x, 1) = ψ′λp
′
λ (x′) , ∀x′ ∈ X ′. (1.25)

Let (α, α′) be a pair of coverings α and α′ of P and P ′, respectively. Let (α1, α
′
1) be a star-

refinement of (α, α′). Let use the theorem 1.5 for the ANR-map t : P → P ′ and for the pair
(α1, α

′
1), and choose a pair (β, β′) of coverings β and β′ of P and P ′, respectively, such that (β, β′)

is a star-refinement of (α1, α
′
1) . Now use the property FR2) for the pair (β, β′) and choose a pair

(β1, β
′
1) of coverings β1 and β′1 of P and P ′, respectively, such that (β1, β

′
1) is a star-refinement of

(β, β′) . Therefore, we have

(α, α′) <∗ (α1, α
′
1) <∗ (β, β′) <∗ (β1, β

′
1) . (1.26)

Let t′ be the map t× t : P × P → P ′ × P ′. Denote by (ζ, ζ ′) : f → t′ a morphism defined by

ζ (x) = (ϕλpλ (x) , ψλpλ (x)) , ∀x ∈ X, (1.27)

ζ ′ (x′) = (ϕ′λp
′
λ (x′) , ψ′λp

′
λ (x′)) , ∀x′ ∈ X ′. (1.28)

Let (η, η′) , (ξ, ξ′) : t′ → t be the morphisms defined by

η (y, y1) = y, ξ (y, y1) = y1, ∀ (y, y1) ∈ P × P, (1.29)

η′ (y′, y′1) = y′, ξ′ (y′, y′1) = y′1, ∀ (y′, y′1) ∈ P ′ × P ′. (1.30)

In this case we have
(η, η′) ◦ (ζ, ζ ′) = (ϕλ, ϕ

′
λ) ◦ (pλ, p

′
λ) , (1.31)

(ξ, ξ′) ◦ (ζ, ζ ′) = (ψλ, ψ
′
λ) ◦ (pλ, p

′
λ) . (1.32)

Indeed,
(η ◦ ζ) (x) = η (ϕλpλ (x) , ψλpλ (x)) = ϕλpλ (x) , (1.33)

(η′ ◦ ζ ′) (x′) = η′ (ϕ′λp
′
λ (x′) , ψ′λp

′
λ (x′)) = ϕ′λp

′
λ (x′) , (1.34)

(ξ ◦ ζ) (x) = ξ (ϕλpλ (x) , ψλpλ (x)) = ψλpλ (x) , (1.35)
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(ξ′ ◦ ζ ′) (x′) = ξ′ (ϕ′λp
′
λ (x′) , ψ′λp

′
λ (x′)) = ψ′λp

′
λ (x′) . (1.36)

On the other hand, by (1.22), (1.23), (1.24) and (1.25) we have

Θ (x, 0) = (η ◦ ζ) (x) , ∀x ∈ X, (1.37)

Θ (x, 1) = (ξ ◦ ζ) (x) , ∀x ∈ X, (1.38)

Θ′ (x′, 0) = (η′ ◦ ζ ′) (x′) , ∀x′ ∈ X ′, (1.39)

Θ (x, 1) = (ξ′ ◦ ζ ′) (x′) , ∀x′ ∈ X ′. (1.40)

Therefore, (Θ,Θ′) : f × 1I → t is a homotopy which connects the morphisms (η, η′) ◦ (ζ, ζ ′)
and (ξ, ξ′) ◦ (ζ, ζ ′) . The map t′ is an ANR-map and so by lemma 1.3 there exist an ANR-map
t′′ : P2 → P

′

2, a morphism (σ, σ′) : f → t′′, (κ, κ′) : t′′ → t′ and a fiber homotopy (∆,∆′) : t′′×1I → t
such that

(ζ, ζ ′) = (κ, κ′) ◦ (σ, σ′) , (1.41)

(∆,∆′) : (ξ, ξ′) ◦ (κ, κ′) ∼= (η, η′) ◦ (κ, κ′) , (1.42)

(Θ,Θ′) = (∆,∆′) ◦ (σ × 1I , σ
′
1 × 1I) . (1.43)

Consider the pair
(

∆−1 (β1) ,∆′−1(β
′

1)
)

of coverings ∆−1 (β1) and ∆′−1(β
′

1) of spaces P2 × I and

P
′

2 × I, respectivelly. For the coverings ∆−1 (β1) and ∆′−1(β
′

1) choose refinements γ̃ and γ̃
′
, which

are stacked coverings of P2 × I and P
′

2 × I, such that γ̃ < t′′−1
(
γ̃
′
)
.

By FR1) for the (σ, σ′) : f → t′′ and pair (γ, γ′), there exist a λ′′ ≥ λ and a mapping (ε, ε′) :
fλ′′ → t′′ such that

((σ, σ′) , (ε, ε′) ◦ (pλ′′ , p
′
λ′′)) ≤ (γ, γ′) . (1.44)

Note that for anyW ∈ γ andW ′ ∈ γ′, there exist J ∈ JW and J ′ ∈ JW ′ , such thatW×{0} ⊂W×J ,
W ′ × {0} ⊂W ′ × J ′. On the other hand, for W × J and W ′ × J ′, there exist V ∈ β1 and V ′ ∈ β′1,
such that W × J ⊂ ∆−1 (V ) and W ′ × J ′ ⊂ ∆′−1 (V ′). Therefore, by (1.42) we have

(η ◦ κ) (W ) = ∆ (W × {0}) ⊂ ∆ (W × J) ⊆ V, (1.45)

(η′ ◦ κ′) (W ′) = ∆′ (W ′ × {0}) ⊂ ∆′ (W ′ × J ′) ⊆ V ′. (1.46)

Consequently, by (1.44) we obtain

((η, η′) ◦ (κ, κ′) ◦ (σ, σ′) , (η, η′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλ′′ , p
′
λ′′)) ≤ (β1, β

′
1) . (1.47)

By (1.41) and (1.31) we have

(η, η′) ◦ (κ, κ′) ◦ (σ, σ′) = (η, η′) ◦ (ζ, ζ ′) =

(ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ) = (ϕλ, ϕ

′
λ) ◦ (pλλ′′ , p

′
λλ′′) ◦ (pλ′′ , p

′
λ′′) . (1.48)

Therefore, (1.47) becomes

((ϕλ, ϕ
′
λ) ◦ (pλλ′′ , p

′
λλ′′) ◦ (pλ′′ , p

′
λ′′) , (η, η

′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλ′′ , p
′
λ′′)) ≤ (β1, β

′
1) . (1.49)
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Analogously, we obtain

((ψλ, ψ
′
λ) ◦ (pλλ′′ , p

′
λλ′′) ◦ (pλ′′ , p

′
λ′′) , (ξ, ξ

′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλ′′ , p
′
λ′′)) ≤ (β1, β

′
1) . (1.50)

By choose of
(
β1, β

′

1

)
and the property FR2), there exists a λ′ ≥ λ′′ such that

((ϕλ, ϕ
′
λ) ◦ (pλλ′ , p

′
λλ′) , (η, η

′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλλ′ , p
′
λλ′)) ≤ (β, β′) , (1.51)

((ψλ, ψ
′
λ) ◦ (pλλ′ , p

′
λλ′) , (ξ, ξ

′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλλ′ , p
′
λλ′)) ≤ (β, β′) . (1.52)

On the other hand, by choose of (β, β′) and theorem 1.5, there exist
(
α1, α

′

1

)
−homotopies

(K,K′) : (ϕλ, ϕ
′
λ) ◦ (pλλ′ , p

′
λλ′)
∼= (η, η′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλλ′ , p

′
λλ′) , (1.53)

(Λ,Λ′) : (ψλ, ψ
′
λ) ◦ (pλλ′ , p

′
λλ′)
∼= (ξ, ξ′) ◦ (κ, κ′) ◦ (ε, ε′) ◦ (pλλ′ , p

′
λλ′) . (1.54)

By (1.44), for any t ∈ I the points (σ (x) , t) and (εpλ′′ (x) , t) belong to some member of γ̃ and
therefore, they belong to ∆−1 (V ), for some V ∈ β1. In the same way, (σ′ (x′) , t) and (ε′p′λ′′ (x

′) , t)

belong to ∆
′ −1 (V ′), for some V ′ ∈ β′1. Consequently, (∆,∆′) ◦

(
σ × 1I , σ

′

1 × 1I

)
and (∆,∆′) ◦

(ε ◦ (pλ′′ × 1I) , ε
′ ◦ (p′λ′′ × 1I)) are

(
β1, β

′

1

)
−near and therefore, (β, β′)−near. i.e.

((∆,∆′) ◦ (σ × 1I , σ
′
1 × 1I) , (∆,∆

′) ◦ (ε ◦ (pλ′′ × 1I) , ε
′ ◦ (p′λ′′ × 1I)) ) ≤ (β, β′) . (1.55)

Our aim is to define a homotopy (H,H′) : fλ′ × 1I → t using the homotopies (K,K′) , (Λ,Λ′) :
fλ′ × 1I → t and (∆,∆′) : t′′ × 1I → t.

For each W ′ ∈ γ′, choose a number 0 < αW ′ <
1
3 , which is smaller than the Lebegue number

of the covering JW ′ . In this case, if |t− t′| ≤ αW ′ , t, t′ ∈ I, then there exists J ′ ∈ JW ′ , such
that t, t′ ∈ J ′. Consequently, if z′ ∈ W ′ and |t− t′| ≤ αW ′ , then (z′, t) , (z′, t′) ∈ W ′ × J ′ ∈ γ̃′ and
therefore, ∆′ (z′, t) and ∆′ (z′, t′) belong to some U ′ ∈ β′1. Now apply lemma 2.6 and we obtain a
continuous function ϕ : P

′′

1 → I such that for every z ∈ P ′2 there is W ′ ∈ γ′ and

z ∈W ′, 0 < ϕ (z) ≤ αW ′ ≤
1

3
. (1.56)

Let H : Xλ′ × I → P and H′ : X
′

λ′ × I → P ′ are defined by

H(x, t) =


K
(
x, t

ϕt′′εpλ′′λ′ (x)

)
, 0 ≤ t ≤ ϕt′′εpλ′′λ′(x)

∆
(
εpλ′′λ′(x), 1−ϕt′′εpλ′′λ′ (x)

1−2ϕt′′εpλ′′λ′ (x)

)
, ϕt′′εpλ′′λ′(x) ≤ t ≤ 1− ϕt′′εpλ′′λ′(x)

Λ
(
x, 1−t

ϕt′′εpλ′′λ′ (x)

)
, 1− ϕt′′εpλ′′λ′(x) ≤ t ≤ 1

(1.57)

H ′(x′, t) =


K′
(
x′, t

ϕt′′ε′p′
λ′′λ′ (x

′)

)
, 0 ≤ t ≤ ϕt′′ε′p′λ′′λ′(x′)

∆′
(
ε′p′λ′′λ′(x

′),
1−ϕt′′ε′p′

λ′′λ′ (x
′)

1−2ϕt′′ε′p′
λ′′λ′ (x

′)

)
, ϕt′′ε′p′λ′′λ′(x) ≤ t ≤ 1− ϕt′′ε′p′λ′′λ′(x′)

Λ′
(
x′, 1−t

ϕt′′ε′p′
λ′′λ′ (x)

)
, 1− ϕt′′ε′p′λ′′λ′(x′) ≤ t ≤ 1

(1.58)
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Let show that the following diagram is commutative:

Xλ × I X ′λ′ × I

P P ′.

fλ × 1I

t

H H ′

(1.59)

Consider three different cases:

1. Let x ∈ Xλ′ and 0 ≤ t ≤ ϕt′′εpλ′′λ′ (x), then

(t ◦H) (x, t) = (t ◦K)

(
x,

t

ϕt′′εpλ′′λ′ (x)

)
= (K′ ◦ (fλ′ × 1I))

(
x,

t

ϕt′′εpλ′′λ′ (x)

)
=

K′
(
fλ′ (x) ,

t

ϕt′′εpλ′′λ′ (x)

)
= H (fλ′ (x) , t) = (H′ ◦ (fλ′ × 1I)) (x, t) . (1.60)

2. Let x ∈ Xλ′ and ϕt′′εpλ′′λ′ (x) ≤ t ≤ 1− ϕt′′εpλ′′λ′ (x), then

(t ◦H) (x, t) = (t ◦∆)

(
εpλ′′λ′ (x) ,

1− ϕt′′εpλ′′λ′ (x)

1− 2ϕt′′εpλ′′λ′ (x)

)
=

(∆′ ◦ (t′′ × 1I))

(
εpλ′′λ′ (x) ,

1− ϕt′′εpλ′′λ′ (x)

1− 2ϕt′′εpλ′′λ′ (x)

)
=

∆′
(
t′′εpλ′′λ′ (x) ,

1− ϕt′′εpλ′′λ′ (x)

1− 2ϕt′′εpλ′′λ′ (x)

)
= ∆′

(
ε′p′λ′′λ′fλ′ (x) ,

1− ϕt′′εpλ′′λ′ (x)

1− 2ϕt′′εpλ′′λ′ (x)

)
=

= H′ (fλ′(x), t) = (H′ ◦ fλ′×1I ) (x, t). (1.61)

3. Let x ∈ Xλ′ and 1− ϕε′p′λ′′λ′ (x′) ≤ t ≤ 1, then

(t ◦H)(x, t) = (t ◦ Λ)

(
x,

1− t
ϕt′′εpλ′′λ′

)
= (Λ′ ◦ (fλ′ × 1I))

(
x,

1− t
ϕt′′εpλ′′λ′

)
=

Λ′
(
fλ′ (x) ,

1− t

ϕεpλ′′λ′ (x)

)
= H′ (fλ′ (x) , t) = (H′ ◦ (fλ′ × 1I)) (x, t) . (1.62)

Therefore, the pair (H,H′) : fλ′×1I → t is a well-defined homotopy between (ϕλ, ϕ
′
λ)◦(ϕλλ′′ , ϕ′λλ′′)

and (ψλ, ψ
′
λ) ◦ (ψλλ′′ , ψ

′
λλ′′) .

By [Ma2] we have that
(Θ′,H′ ◦ (p′λ′ × 1I)) ≤ α′. (1.63)

Therefore, it remains to show that

(Θ′,H ◦ (pλ′ × 1I)) ≤ α. (1.64)
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So we have to show that for every (x, t) ∈ X × I, there exists a U ∈ α such that

Θ′(x, t),H (pλ′(x), t)) ∈ U. (1.65)

Let ϕt′′εpλ′′ (x) ≤ t ≤ 1− ϕt′′εpλ′′ (x), then by (1.57) and (1.43) we have

Θ (x, t) = ∆ (σ (x) , t) . (1.66)

H(pλ′(x), t) = ∆

(
εpλ′′λ′ (pλ′(x)) ,

1− ϕt′′εpλ′′λ′ (pλ′(x))

1− 2ϕt′′εpλ′′λ′ (pλ′(x))

)
=

∆

(
εpλ′′ (x) ,

1− ϕt′′εpλ′′ (x)

1− 2ϕt′′εpλ′′ (x)

)
. (1.67)

By (1.56), for the z′ = t′′εpλ′′ (x) , there is a W ′ ∈ γ′ such that

z′ ∈W ′, 0 < ϕ (t′′εpλ′′ (x)) ≤ αW ′ ≤
1

3
. (1.68)

Note that ϕt′′εpλ′′ (x) ≤ t ≤ 1− ϕt′′εpλ′′ (x) implies that |1− 2t| ≤ 1− 2ϕt′′εpλ′ (y) and so∣∣∣∣t− 1− ϕt′′εpλ′′ (x)

1− 2ϕt′′εpλ′′ (x)

∣∣∣∣ ≤ ϕt′′εpλ′′(x) ≤ αW ′ . (1.69)

Therefore, there exists a J ′ ∈ JW ′ such that

(t′′εpλ′′ (x) , t)

(
t′′εpλ′′ (x) ,

1− ϕt′′εpλ′′ (x)

1− 2ϕt′′εpλ′′ (x)

)
∈W ′ × J ′. (1.70)

By the choose of γ̃
′
, for each W ′×J ′ ∈ γ̃′ there exists a W×J ∈ γ̃ such that t′′−1 (W ′ × J ′) ⊂W×J

and so

(εpλ′′ (x) , t) ,

(
εpλ′′ (x) ,

1− ϕεpλ′′ (x)

1− 2ϕεpλ′ (x)

)
∈W × J. (1.71)

On the other hand, for W × J ∈ γ̃ there is a V1 ∈ β1, such that W × J ∈ ∆−1(V1), and by (1.71)
we have

∆ (εpλ′′ (x) , t) ,∆

(
εpλ′′ (x) ,

1− ϕεpλ′′ (x)

1− 2ϕεpλ′ (x)

)
∈ V1. (1.72)

Note that by (1.44) there exists a W1 × J ∈ γ such that

σ (x) , εpλ′′ (x) ∈W1. (1.73)

Therefore, (σ (x) , t) and (εpλ′′(x), t) belong to some W1 × J ∈ γ and so there is a V2 ∈ β1, such
that

∆ (σ (x) , t) ,∆ (εpλ′′ (x) , t) ∈ V2. (1.74)

Note that β1 is a star-refinement of β. On the other hand, β is a star-refinement of α and so by
(1.71) there is a U ∈ α such that

∆ (σ (x) , t) ,∆

(
εpλ′′ (x) ,

1− ϕεpλ′′ (x)

1− 2ϕεpλ′ (x)

)
∈ U. (1.75)
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On the other hand, by (1.66) and (1.67) we have

Θ (x, t) ,H (pλ′′ (x) , t) ∈ U. (1.76)

So, if ϕt′′pλ′′(x) ≤ 1− ϕt′′pλ′′(x) then (1.64) is fulfilled.
Now consider the case when 0 ≤ t ≤ 1 − ϕt′′pλ′′(x) and as before, for the z′ = εpλ′′ (x) ∈ P ′′1

choose W ′ ∈ γ′ such that

z′ ∈W ′, 0 < ϕt′′εpλ′′ (x) ≤ αW ′ ≤
1

3
. (1.77)

In this case |t− 0| ≤ ϕt′′pλ′′(x) and so there exists J ′ ∈ J ′W such that

(t′′εpλ′′ (x) , 0) (t′′εpλ′′ (x) , t) ∈W ′ × J ′. (1.78)

Since t′′−1(γ) ≥ γ̃, there is a W × J ∈ γ̃ such that

(εpλ′′ (x) , 0) (εpλ′′ (x) , t) ∈W × J. (1.79)

Therefore, there exists a V1 ∈ β1, such that

∆ (εpλ′′ (x) , 0) ,∆ (εpλ′′ (x) , t) ∈ V1. (1.80)

On the other hand, by (1.73) for each t ∈ I there is a W1 × J ∈ γ̃ such that

∆ (σ (x) , t) ,∆ (εpλ′′ (x) , t) ∈ V2. (1.81)

Let t = 0, then (1.81) becomes

∆ (σ (x) , 0) ,∆ (εpλ′′ (x) , 0) ∈ V ′2 . (1.82)

In this case, in the same way as before, because β1 is a star-refinement of β and β is a star-refinement
of α, there is a U1 ∈ α1 such that

∆ (x, 0) ,∆ (x, t) ∈ U1. (1.83)

On the other hand, by (1.66) and (1.67) we have that K : Xλ′ × I → P is an α−homotopy and so
for y = pλ′(x) there is a U2 ∈ α such that

K (pλ′ (x) , 0) ,K

(
pλ′ (x) ,

t

ϕt′′εpλ′′ (x)

)
∈ U2. (1.84)

By (1.53), (1.34), (1.41), (1.43) we have

K (pλ′ (x) , 0) = (ϕλ ◦ pλλ′) (pλ(x)) = (ϕλ ◦ pλ) ((x)) = (η ◦ ζ) (x) =

(η ◦ κ ◦ σ) (x) = (η ◦ κ) (x) = ∆ (σ(x), 0) = Θ(x, 0). (1.85)

Furthermore, by (1.56)

K

(
pλ′ (x) ,

t

ϕt′′εpλ′′ (x)

)
= H (pλ′(x), t) . (1.86)
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Therefore, we have
Θ (x, 0) ,H (pλ′ (x) , t) ∈ U2. (1.87)

Since α1 is a star-refinement of α, by (1.83) and (1.87), there is a U ∈ α such that

Θ (x, 0) ,H (pλ′ (x) , t) ∈ U. (1.88)

Therefore, (1.64) is fulfilled.
The proof of the last case when 1−ϕt′′εpλ′′λ′(x) ≤ t ≤ 1 is analogous to the second case. q.e.d.

Theorem 1.8. Every fiber resolution (p,p′) = {(pλ, p′λ) } : f → f of a map f : X → X ′ is a
strong fiber expansion of f.

Proof. First, let prove the FS1) property. Let t : P → P ′ be an ANR-map and let (ϕ,ϕ′) : f → t be
a morphism. Consider a pair (α, α′) of α ∈ Cov (P ) and α′ ∈ Cov (P ′), such that every (α, α′)-near
morphism into t is homotopic. By the condition FR1) there exist a λ ∈ Λ and a morphism (ϕλ, ϕ

′
λ) :

fλ → t such that (ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ) and (ϕ,ϕ′) are (α, α′)-near and consequently, homotopic, i.e.

(ϕ,ϕ′) ∼= (ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ). (1.89)

Now we will prove the FS2). Let t : P → P ′ be an ANR-map, λ ∈ Λ and (ϕ,ϕ′) , (ψ,ψ′) : fλ → t
be morphisms such that (ϕλ, ϕ

′
λ)◦(pλ, p′λ) and (ψλ, ψ

′
λ)◦(pλ, p′λ) are connected by a fiber homotopy

(Θ,Θ′) : f × 1I → t. Let (α, α′) be a pair of coverings α ∈ Cov (P ) and α′ ∈ Cov (P ′). By theorem
1.2 there exist a pair (β, β′) of coverings β ∈ Cov (P ) and β′ ∈ Cov (P ′) , such that each (β, β′)-near
morphism into t : P → P ′ is homotopic. If we use lemma 2.4 for the pair (β, β′), then we obtain
that there exist a λ′ ≥ λ and homotopy (H,H′) : f × 1I → t such that

(H,H′) : (ϕλ, ϕ
′
λ) ◦ (pλ, p

′
λ) ∼= (ψλ, ψ

′
λ) ◦ (pλ, p

′
λ) (1.90)

((Θ,Θ) , (H,H′) ◦ (pλ × 1I , p
′
λ × 1I)) . (1.91)

Now, if we use theorem 1.2 and instead of map f : X → Y consider the map t : P → P ′

and instead of morphisms
(
ϕ1, ψ1

)
,
(
ϕ2, ψ2

)
: g → f consider the morphisms (Θ,Θ′) , (H,H′) ◦

(pλ × 1I , p
′
λ × 1I) : f × 1I → t, then we obtain that there exists a homotopy which connects given

morphisms. Moreover, restriction of morphisms (Θ,Θ′) and (H,H′) ◦ (pλ × 1I , p
′
λ × 1I) on the

submap f × 1∂I : X × ∂I → X ′ × ∂I coincides and so the obtained homotopy is a homotopy which
is fixed on the submap f × 1∂I . q.e.d.

2 Main theorem on strong fiber expansion

Let (ϕλ, ϕ
′
λ) , (ψλ, ψ

′
λ) : fλ → t be morphisms as in the SF2). Consider the new morphism

(σλ, σ
′
λ) : fλ × 1∂I → t defined by the following formula:(

σλ|Xλ×{0}, σ
′
λ|Xλ′×{0}

)
= (σλ, σ

′
λ) ◦

(
iXλ×{0}, iXλ′×{0}

)
= (ϕλ, ϕ

′
λ) , (2.1)(

σλ|Xλ×{1}, σ
′
λ|Xλ′×{1}

)
= (σλ, σ

′
λ) ◦

(
iXλ×{1}, iXλ′×{1}

)
= (ψλ, ψ

′
λ) , (2.2)

where
(
iXλ×{0}, iX′λ×{0}

)
: fλ × 1{0} → fλ × 1∂I is an inclusion. In this case, the condition SF2)

can be formulated in the following way:



Strong shape theory of continuous maps 75

If (σλ, σ
′
λ) : fλ × 1∂I → t is a morphism and (Θ,Θ′) : f × 1I → t is a fiber homotopy such that(

Θ|X×∂I ,Θ
′
|X′×∂I

)
= (Θ,Θ′) ◦

(
i|X×∂I , i

′
|X′×∂I

)
=

(σλ, σ
′
λ) ◦ (pλ × 1∂I , p

′
λ × 1∂I) , (2.3)

then there exist λ′ ≥ λ and fiber homotopies (∆,∆′) : fλ × 1I → t and (Γ,Γ′) : fλ × 1I × 1I → t
such that (

∆|X′λ×∂I ,∆
′
|X′
λ′×∂I

)
= (∆,∆′) ◦

(
i|Xλ×∂I , i

′
|X′
λ′×∂I

)
=

(σλ, σ
′
λ) ◦ (pλλ′ × 1∂I , p

′
λλ′ × 1∂I) , (2.4)

and the homotopy (Γ,Γ′) connects (Θ,Θ′) and (∆,∆′) ◦ (pλ × 1I , p
′
λ × 1I) and is fixed on the

submap f × 1∂I : X × 1∂I → X ′ × 1∂I .
Let t : P → P ′ be a continuous map and Y be a topological space. Consider the map

t# : C (I, P )→ C (I, P ′) (2.5)

which is defined by the formula

t′′(h)(y) = (t ◦ h)(y). ∀h ∈ C(I, P ), y ∈ Y. (2.6)

Let f : X → X ′ be any continuous map and (ϕ,ϕ′) : f → t# be any morphism, then we can

define the morphism
(
ϕ̄, ϕ̄

′
)

: f × 1Y → t by the following

(ϕ̄ (x, y) , ϕ̄′ (x′, y)) = (ϕ (x) (y) , ϕ′ (x′) (y)) , ∀ x ∈ X, x′ ∈ X ′, y ∈ Y. (2.7)

Analogously, if (ψ,ψ′) : f × 1Y → t is a morphism, then we can define a morphism
(
ψ̃, ψ̃

′
)

:

f → t# by (
ψ̃ (x) (y) , ψ̃′ (x′) (y)

)
= (ψ (x, y) , ψ′ (x′, y)) , ∀ x ∈ X, x′ ∈ X ′, y ∈ Y. (2.8)

Theorem 2.1. If (p,p′) = {(pλ, p′λ) } : f → f is a strong fiber expansion and Y is a compact

Hausdorff space, then (p× 1Y ,p
′ × 1Y ) =

{(
pλ × 1Y , p

′

λ × 1Y

) }
: f × 1Y → f × 1Y is also a

strong fiber expansion.

Proof. First, let prove that (p× 1Y ,p
′ × 1Y ) has the property SF1). Consider any ANR-map

t : P → P ′ and a morphism (ϕ,ϕ′) : f → t. Let (ϕ̃, ϕ̃′ ) : f → t# is a corresponding morphism.
Since t# is an ANR-map and (p,p′) = {(pλ, p′λ) } : f → f is a strong fiber expansion, and so
has the property SF1), then there exist a λ ∈ Λ and a morphism (ϕλ, ϕ

′
λ) : fλ → t# and a fiber

homotopy (Θ,Θ′) : f × 1I → t# such that

Θ (x, 0) = ϕ̃ (x) , Θ (x, 1) = (ϕλ ◦ pλ) (x) , ∀x ∈ X (2.9)

Θ′ (x′, 0) = ϕ̃′ (x′) , Θ′ (x′, 1) = (ϕ′λ ◦ p′λ) (x′) , ∀x′ ∈ X ′. (2.10)
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Let (ϕ̄λ, ϕ̄
′
λ ) : fλ × 1Y → t and

(
Θ̄, Θ̄

′
)

: f × 1Y × 1I → t# (note that instead of f × 1Y × 1I , we

should have f × 1I × 1Y , but we use the above mentioned notation) be the morphisms induced by
(ϕλ, ϕ

′
λ) and (Θ,Θ′), respectively. In this case, we have

Θ̄ (x, y, 0) = ϕ̄ (x, y) , Θ̄ (x, y, 1) = (ϕ̄λ ◦ (pλ × 1Y )) (x, y) , (2.11)

Θ̄
′
(x′, y, 0) = ϕ̄

′
(x′, y) , Θ̄

′
(x′, y, 1) = (ϕ̄′λ ◦ (p′λ × 1Y )) (x′, y) . (2.12)

Indeed,
Θ̄ (x, y, 0) = Θ (x, 0) (y) = ϕ̃ (x) (y) = ϕ̄ (x, y) , (2.13)

Θ̄ (x, y, 1) = Θ (x, 1) (y) = (ϕλ ◦ pλ) (x) (y) =

ϕλ (pλ (x)) (y) = ϕ̄ (pλ (x) , y) = (ϕ̄λ ◦ (pλ × 1Y )) (x, y) , (2.14)

Θ̄
′
(x′, y, 0) = Θ′ (x′, 0) (y) = ϕ̃′ (x′) (y) = ϕ̄′ (x′, y) , (2.15)

Θ̄
′
(x′, y, 1) = Θ′ (x′, 1) (y) = (ϕ′λ ◦ p′λ) (x′) (y) =

ϕ′λ (p′λ (x′)) (y) = ϕ̄′ (p′λ (x′) , y) = (ϕ̄′λ ◦ (p′λ × 1Y )) (x′, y) . (2.16)

Therefore,
(

Θ̄, Θ̄
′
)

: f×1Y ×1I → t# is a fiber homotopy which connects the morphisms (ϕ̄λ, ϕ̄
′
λ ) :

fλ× 1Y → t and (ϕ̄λ, ϕ̄
′
λ) ◦ ((pλ × 1Y , p

′
λ × 1Y ) : fλ× 1Y → t and the so condition SF1) is fulfilled.

Now, we have to prove the SF2). Let (σλ, σ
′
λ) : (fλ × 1Y ) × 1∂I → t be a morphism and(

Θ,Θ
′
)

: (f × 1Y )× 1I → t be a fiber homotopy such that(
Θ|X×Y×∂I ,Θ

′

|X′×Y×∂I

)
= (σλ, σ

′
λ) ◦ (pλ × 1Y × 1∂I , p

′
λ × 1Y × 1∂I) . (2.17)

Therefore, we have
Θ (x, y, s) = (σλ ◦ pλ × 1Y × 1∂I) (x, y, s) =

σλ (pλ (x) , y, s) , ∀x ∈ X, y ∈ Y, s ∈ ∂I, (2.18)

Θ
′
(x′, y, s) = (σ′λ ◦ p′λ × 1Y × 1∂I) (x′, y, s) =

σ′λ (p′λ (x′) , y, s) , ∀x′ ∈ X ′, y ∈ Y, s ∈ ∂I. (2.19)

Consider the morphisms (σ̃λ, σ̃
′
λ) : fλ × 1∂I → t# and

(
Θ̃, Θ̃

′
)

: f × 1I → t# induced by (σλ, σ
′
λ)

and (Θ,Θ′). In this case, we have(
Θ̃|X×∂I , Θ̃

′

|X′×∂I

)
= (σ̃λ, σ̃

′
λ) ◦ (pλ × 1∂I , p

′
λ × 1∂I) . (2.20)

Indeed,
Θ̃ (x, s) (y) = Θ (x, y, s) = σλ (pλ (x) , y, s) = σ̃λ (pλ (x) , s) (y) =

= (σ̃λ ◦ (pλ × 1∂I)) (x, s) (y) , ∀x ∈ X, y ∈ Y, s ∈ ∂I, (2.21)
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Θ̃
′
(x′, s) (y) = Θ′ (x′, y, s) = σ′λ (p′λ (x′) , y, s) = σ̃′λ (p′λ (x′) , s) (y) =

= (σ̃′λ ◦ (p′λ × 1∂I)) (x′, s) (y) , ∀x′ ∈ X ′, y ∈ Y, s ∈ ∂I. (2.22)

Therefore, by the SF2) for (p,p′), there exist λ′ ≥ λ and a fiber homotopy (∆,∆′) : fλ′ × 1I → t#

such that (
∆|X×∂I ,∆

′

|X′×∂I

)
= (σ̃λ′ , σ̃

′
λ′) ◦ (pλλ′ × 1∂I , p

′
λλ′ × 1∂I) . (2.23)

Moreover, there is a fiber homotopy (Γ,Γ′) : fλ×1I×1I → t# which connects homotopies
(

Θ̃, Θ̃
′
)

,

(∆,∆′) ◦ (pλ′ × 1I , p
′
λ′ × 1I) and (Γ,Γ′) is fixed on the submap f × 1∂I : X × ∂I → X ′ × ∂I , i.e.

Γ (x, t, 0) = Θ̃ (x, t) , Γ′ (x′, t, 0) = Θ̃
′
(x′, t) , (2.24)

Γ (x, t, 1) = ∆ (pλ′ (x) , t) , Γ′ (x′, t, 0) = ∆′ (p′λ′′ (x′) , t) , (2.25)

Γ (x, t, s) = Γ (x, t, 1) = Θ̃ (x, t) , ∀ x ∈ X, t ∈ ∂I , s ∈ I, (2.26)

Γ′ (x′, t, s) = Γ′ (x′, t, 1) = Θ̃
′
(x′, t) , ∀ x′ ∈ X ′, t ∈ ∂I , s ∈ I. (2.27)

Let
(
∆̄, ∆̄′

)
: fλ′ × 1Y × 1I → t and

(
Γ̄, Γ̄′

)
: fλ × 1Y × 1I × 1I → t be the morphisms induced

by (∆,∆′) and (Γ,Γ′), respectively. In this case, we have(
∆̄|X×Y×∂I , ∆̄

′

|X′×Y×∂I

)
= (σλ, σ

′
λ) ◦ (pλλ′ × 1Y × 1∂I , p

′
λλ′ × 1Y × 1∂I) , (2.28)(

Γ̄, Γ̄′
)

: (Θ,Θ′) ∼=
(
∆̄, ∆̄′

)
◦ (pλ × 1Y × 1I , p

′
λ × 1Y × 1I) (rel f × 1∂I) . (2.29)

Indeed,
∆̄ (x, y, s) = ∆ (x, s) (y) = (σ̃λ′ ◦ pλλ′ × 1∂I) (x, s) (y) =

σ̃λ′ (pλλ′ (x) , s) (y) = σλ′ (pλλ′ (x) , y, s) =

(σλ′ ◦ pλλ′ × 1Y × 1∂I) (x, y, s) , ∀ x ∈ X, y ∈ Y, s ∈ ∂I, (2.30)

∆̄
′
(x′, y, s) = ∆′ (x′, s) (y) = (σ̃′λ′ ◦ p′λλ′ × 1∂I) (x′, s) (y) =

σ̃′λ′ (p
′
λλ′ (x

′) , s) (y) = σ′λ′ (p
′
λλ′ (x

′) , y, s) =

(σ′λ′ ◦ p′λλ′ × 1Y × 1∂I) (x′, y, s) , ∀ x′ ∈ X ′, y ∈ Y, s ∈ ∂I. (2.31)

Therefore, (2.28) is fulfilled. On the other hand,

Γ̄ (x, y, t, 0) = Γ (x, t, 0) (y) = Θ̃ (x, t) (y) = Θ (x, y, t) , (2.32)

Γ̄
′
(x′, y, t, 0) = Γ′ (x′, t, 0) (y) = Θ̃

′
(x′, t) (y) = Θ′ (x′, y, t) , (2.33)

Γ̄ (x, y, t, 1) = Γ (x, t, 1) (y) = ∆ (pλ′ (x) , t) (y) = ∆̄ (pλ′ (x) , y, t) , (2.34)
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Γ̄
′
(x′, y, t, 1) = Γ′ (x′, t, 1) (y) = ∆′

(
p
′

λ′ (x
′) , t

)
(y) = ∆̄

′
(
p
′

λ′ (x
′) , y, t

)
. (2.35)

Therefore, it remains to show that

Γ̄ (x, y, t, s) = Γ̄ (x, y, t, 1) = Θ (x, y, t) , ∀ x ∈ X, y ∈ Y, t ∈ ∂I , s ∈ I, (2.36)

Γ̄
′
(x′, y, t, s) = Γ̄

′
(x′, y, t, 1) = Θ′ (x′, y, t) , ∀ x′ ∈ X ′, y ∈ Y, t ∈ ∂I, s ∈ I, (2.37)

which are followed by (2.26) and (2.27). q.e.d.

Definition 2.2. Let (ϕ,ϕ′) : f → g be a morphism. We will say that (ϕ,ϕ′) is a fiber cofibration
if for each fiber homotopy (Θ,Θ′) : f × 1I → g and a morphism (ψ,ψ′) : g → t for which(

Θ|X×{0},Θ
′

|X′×{0}

)
= (Θ,Θ′) ◦

(
iX×{0}, iX′×{0}

)
= (ψ,ψ′) ◦ (ϕ,ϕ′) , (2.38)

there exists a fiber homotopy (∆,∆′) : g × 1I → t such that(
∆|Y×{0},∆

′

|Y ′×{0}

)
= (∆,∆′) ◦

(
iY×{0}, iY ′×{0}

)
= (ψ,ψ′) , (2.39)

(∆,∆′) ◦ (ϕ× 1I , ϕ
′ × 1I) = (Θ,Θ′) . (2.40)

Lemma 2.3. If for a morphism (ϕ,ϕ′) : f → g the maps ϕ : X → Y , ϕ′ : X ′ → Y ′, g : Y → Y ′

and iB : B → Y ′, where B = ϕ′ (X ′)∪ g (Y ) are cofibrations, then the morphism (ϕ,ϕ′) is a fiber
cofibration.

Proof. Consider a morphism (ψ,ψ′) : f → t and a fiber homotopy (Θ,Θ′) : f × 1I → t for
which (2.37) is fulfilled. By our assumption, the continuous map ϕ : X → Y is a cofibration and
Θ : X × I → P is a homotopy such that

Θ|X×{0} = ψ ◦ ϕ. (2.41)

Therefore, there exists a homotopy ∆ : Y × I → P such that

∆|Y×{0} = ψ, (2.42)

∆ ◦ (ϕ× 1I) = Θ. (2.43)

Let ∆1 : Y × I → P ′ be the map given by

∆1 = t ◦∆. (2.44)

In this case, we have
∆1|Y×{0} = t ◦ ψ = ψ′ ◦ g. (2.45)

On the other hand, g : Y → Y ′ is a cofibration and so there exists a homotopy ∆
′

1 : Y ′ × I → P ′

such that
∆
′

1|Y ′×{0} = ψ′, (2.46)

∆
′

1 ◦ (g × 1I) = ∆1. (2.47)
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In the same way, for the maps ϕ′ : X ′ → Y ′, ψ′ : Y ′ → P ′ and the homotopy ∆′ : X ′ × I → P ′ we
have a homotopy ∆

′′

1 : Y ′ × I → P ′ such that

∆
′′

1 |Y ′×{0} = ψ′, (2.48)

∆
′′

1 ◦ (ϕ′ × 1I) = Θ′. (2.49)

Let A = ( ϕ′ ◦ f) (X) = ( g ◦ ϕ) (X) ⊆ Y ′ and A× I ⊆ Y ′ × I. Our aim is to show that ∆
′

1|A×I =

∆
′′

1 |A×I . Indeed, for each a ∈ A there exists an x ∈ X such that g (ϕ (x)) = ϕ′ (f (x)) = a and so

∆
′

1 (a, t) = ∆
′

1 (g (ϕ (x)) , t) =
(

∆
′

1 ◦ (g × 1I)
)

(ϕ (x) , t) = ∆1 (ϕ (x) , t) =

(t ◦∆) (ϕ (x) , t) = (t ◦∆ ◦ (ϕ× 1I)) (x, t) = t ((∆ ◦ (ϕ× 1I)) (x, t)) =

t (Θ (x, t)) = (t ◦Θ) (x, t) = (Θ′ ◦ (f × 1I)) (x, t) = Θ′ (f (x) , t) =(
∆
′′

1 ◦ (ϕ′ × 1I)
)

(f (x) , t) =
(

∆
′′

1 ◦ (ϕ′ × 1I) ◦ (f × 1I)
)

(x, t) =

∆
′′

1 (ϕ′ (f (x)) , t) = ∆
′′

1 (a, t) . (2.50)

Let B = ϕ′ (X ′)∪ g (Y ) ⊆ Y ′ and ∆2 : B × I → P ′ is given by

∆2 =

{
∆
′

1 (b, t) , if b ∈ g (Y )

∆
′′

1 (b, t) , if b ∈ ϕ′ (X ′) .
(2.51)

By (2.49) it is clear that ∆2 is well defined. On the other hand, ψ′ : Y ′ → P ′ is a continuous map
and ∆2 : B × I → P ′ is a homotopy such that

∆2|B×{0} = ψ′ ◦ iB . (2.52)

By our assumption, iB : B → Y ′ is a cofibration and so there exists a ∆′ : Y ′ × I → P ′ such that

∆
′

|Y ′×{0} = ψ′, (2.53)

∆′ ◦ (iB × 1I) = ∆2. (2.54)

By (2.48), (2.49), (2.51) and (2.54) we have

∆′ ◦ (ϕ′ × 1I) = Θ′. (2.55)

Now we will show that a pair (∆,∆′) is a morphism from g × 1I to t. For this aim we must
show that the following diagram is commutative

Y × I Y y′ × I

P P ′.

g × 1I

t

∆ ∆′

(2.56)
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By (2.51), (2.54), (2.46) and (2.43) we have

(∆′ ◦ (g × 1I)) (y, t) = ∆′ (g (y) , t) = (∆′ ◦ (iB × 1I)) (g (y) , t) =

∆2 (g (y) , t) = ∆
′

1 (g (y) , t) =
(

∆
′

1 ◦ (g × 1I)
)

(y, t) =

∆1 (y, t) = (t ◦∆) (y, t) . (2.57)

So we obtain the fiber homotopy (∆,∆′) : g×1I → t for which (2.38) and (2.39) are fulfilled. q.e.d.

Lemma 2.4. For any continuous map f : X → X ′ and any positive integer n ∈ N, the morphism
(1X × i∂In , 1X′ × i∂In) : f × 1∂In → f × 1In is a fiber cofibration.

Proof. Let (ψ,ψ′) : f×1In → t be a morphism and (Θ,Θ′) : f×1∂In×1I2 → t be a fiber homotopy
such that (

Θ|X×∂In×{0},Θ
′

|X′×∂In×{0}

)
= (ψ,ψ′) ◦ (1X × i∂In , 1X′ × i∂In) . (2.58)

Let A = In × {o}∪ (∂In × I) , A = In × I and r : B → A be a corresponding retraction. Consider
mappings ∆1 : X ×A→ P and ∆

′

1 : X ′ ×A→ P ′ which are given by

∆1 (x, e, t) =

{
Θ (x, e, t) , if e ∈ ∂In
ψ (x, e, t) , if t = 0,

(2.59)

∆
′

1 (x′, e, t) =

{
Θ′ (x′, e, t) , if e ∈ ∂In
ψ′ (x′, e, t) , if t = 0.

(2.60)

By (2.58) the mappings ∆1 and ∆
′

1 are well defined. Let show that the pair
(

∆1,∆
′

1

)
is a morphism

from f × 1A to t. Consider the following cases:

1. If e ∈ ∂In, then
(t ◦∆1) (x, e, t) = (t ◦Θ) (x, e, t) = Θ′ (f (x) , e, t) =

∆
′

1 (f (x) , e, t) =
(

∆
′

1 ◦ (f × 1A)
)

(x, e, t) . (2.61)

2. If t = 0, then
(t ◦∆1) (x, e, 0) = (t ◦ ψ) (x, e, 0) = ψ′ (f (x) , e, 0) =

∆
′

1 (f (x) , e, 0) =
(

∆
′

1 ◦ (f × 1A)
)

(x, e, 0) . (2.62)

Let ∆ : X × In × I → P and ∆′ : X ′ × In × I → P ′ be the mappings defined by

∆ (x, e, t) = ∆1 (x, r (e, t)) , (2.63)

∆′ (x′, e, t) = ∆
′

1 (x′, r (e, t)) . (2.64)

It is clear that (∆,∆′) is a morphism from f × 1I × 1I to t. So it remains to show that(
∆|X×In×{0},∆

′

|X′×In×{0}

)
= (ψ,ψ′) , (2.65)
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(Θ,Θ′) = (∆,∆′) ◦ (1X × i∂In × 1I , 1X′ × i∂In × 1I) . (2.66)

Indeed, by (2.63), (2.59), (2.64) and (2.60) we have

∆ (x, e, 0) = ∆1 (x, r (e, 0)) = ∆1 (x, e, 0) = ψ (x, e) , (2.67)

∆′ (x′, e, 0) = ∆
′

1 (x′, r (e, 0)) = ∆
′

1 (x′, e, 0) = ψ′ (x′, e) . (2.68)

Therefore, (2.65) is fulfilled.
To prove (2.66), consider any (x, e, t) ∈ X × ∂In × I and (x′, e, t) ∈ X ′ × ∂In × I. By (2.63),

(2.59), (2.64) and (2.60) we have

(∆ ◦ (1X × i∂In × 1I)) (x, e, t) = ∆ (x, e, t) = ∆1 (x, r (e, t)) =

∆1(x, e, t) = Θ(x, e, t). (2.69)

(∆′ ◦ (1X′ × i∂In × 1I)) (x′, e, t) = ∆′ (x′, e, t) = ∆
′

1 (x′, r (e, t)) =

∆
′

1 (x′, e, t) = Θ′ (x′, e, t) . (2.70)

q.e.d.

Theorem 2.5. For every strong fiber expansion (p,p′) : f → f , if for λ ∈ Λ, (σλ, σ
′
λ) : fλ×1∂I2 → t

is a morphism and (Θ,Θ′) : f × 1I2 → t is a fiber homotopy such that(
Θ|X×∂I2 ,Θ

′

|X′×∂I2

)
= (Θ,Θ′) ◦ (iX×∂I2 , iX′×∂I2) =

(σλ, σ
′
λ) ◦ (pλ × 1∂I2 , p′λ × 1∂I2) , (2.71)

then there exist a λ′ ≥ λ and fiber homotopies (∆,∆′) : fλ× 1I2 → t and (Γ,Γ′) : fλ× 1I2 × 1I → t
such that (

∆|Xλ′×∂I2 ,∆
′

|X′
λ′×∂I

2

)
= (∆,∆′) ◦

(
iXλ′×∂I2 , iX′

λ′×∂I
2

)
=

(σλ, σ
′
λ) ◦ (pλλ′ × 1∂I , p

′
λλ′ × 1∂I) (2.72)

and the homotopy (Γ,Γ′) connects (Θ,Θ′) and (∆,∆′) ◦ (pλ × 1I2 , p′λ × 1I2) and is fixed on the
submap f × 1∂I2 : X × 1∂I2 → X ′ × 1∂I2 .

Proof. Consider any morphism (σλ, σ
′
λ) : fλ × 1∂I2 → t and a fiber homotopy (Θ,Θ′) : f × 1I2 → t

such that (2.71) is fulfilled. By theorem 2.1 the (P× 1I2 : P′ × 1I2) : f × 1I2 → f × 1I2 is a strong

fiber expansion and so by the SF1), there exist a λ′′ ≥ λ, a morphism
(

∆1,∆
′

1

)
: fλ′′ × 1∂I2 → t

and a fiber homotopy
(

Γ1,Γ
′

1

)
: fλ × 1I2 × 1I → t(

Γ1|X×I2×{0},Γ
′

1|X′×I2×{0}

)
=
(

∆1,∆
′

1

)
◦ (pλ′′ × 1I2 , p′λ′′ × 1I2) , (2.73)(

Γ1|X×I2×{1},Γ
′

1|X′×I2×{1}

)
= (Θ,Θ′) . (2.74)
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Consider the morphism
(

1Xλ′′ × i∂I2 , 1X′
λ′′
× i∂I2

)
: fλ′′ × 1∂I2 → fλ′′ × 1I2 . In this case the fiber

homotopy (
Γ2,Γ

′

2

)
=
(

Γ1,Γ
′

1

)
◦ (1X × i∂I2 × 1I , 1X′ × i∂I2 × 1I) (2.75)

connects the following morphisms((
∆1,∆

′

1

)
◦
(

1Xλ′′ × i∂I2 , 1X′
λ′′
× i∂I2

))
◦
(
pλ′′ × 1∂I2 , p

′

λ′′ × 1∂I2

)
: f × 1∂I2 → t, (2.76)(

(σλ, σ
′
λ) ◦

(
pλλ′′ × 1∂I2 , p′

λλ′′
× 1∂I2

))
◦ (pλ′′ × 1∂I2 , p′λ′′ × 1∂I2) : f × 1∂I2 → t. (2.77)

On the other hand, by theorem 2.1 the morphism (p× 1∂I2 ,p′ × 1∂I2) = {(pλ × 1∂I2 , p′λ × 1∂I2)} :
f × 1∂I2 → f × 1∂I2 is an expansion and so by the SF2), there exist λ′ ≥ λ′′ and a fiber homotopy
(K,K′) : fλ′ × 1∂I2 × 1I → t such that(

K|Xλ′×∂I2×{0} ,K
′
|X′λ′×∂I2×{0}

)
=(

(∆1,∆
′
1) ◦

(
1Xλ′′ × i∂I2 , 1X′

λ′′
× i∂I2

))
◦
(
pλ′′ × 1∂I2 , p

′

λ′′ × 1∂I2

)
, (2.78)(

Γ|Xλ′×∂I2×{1} ,Γ
′
|X′λ′×∂I2×{1}

)
=

((σλ, σ
′
λ) ◦ (pλλ′′ × 1∂I2 , p′λλ′′ × 1∂I2)) ◦ (pλ′′ × 1∂I2 , p′λ′′ × 1∂I2) , (2.79)

(K,K′) ◦ (pλ′ × 1∂I2 × 1I , p
′
λ′ × 1∂I2 × 1I)ϕ ∼= (Γ,Γ′) ( rel f × 1∂I2 × 1∂I) . (2.80)

By lemma 2.4 the morphism
(

1Xλ′ × i∂I2 , 1X′
λ′
× i∂I2

)
: fλ′×1∂I2 → fλ′′×1I2 is a fiber cofibration.

On the other hand, by (2.79) we have(
K|Xλ′×∂I2×{0},K

′

|X′
λ′×∂I

2×{0}

)
=

((
∆1,∆

′

1

)
◦
(

1Xλ′′ × i∂I2 , 1X′
λ′′
× i∂I2

))
◦ (pλ′′ × 1∂I2 , p′λ′′ × 1∂I2) =((

∆1,∆
′

1

)
◦ (pλ′′λ′ × 1∂I2 , p′λ′′λ′ × 1∂I2)

)
◦
(

1Xλ′ × i∂I2 , 1X′
λ′
× i∂I2

)
. (2.81)

Therefore, for the fiber homotopy (K,K′) : fλ′ × 1∂I2 × 1I → t there exists a fiber homotopy(
K1,K

′

1

)
: fλ′ × 1I2 × 1I → t such that(

K1|Xλ′×I2×{0},K
′
1|X′λ′×I2×{0}

)
=
(

∆1,∆
′

1

)
◦ (pλ′′λ′ × 1I2 , p′λ′′λ′ × 1I2) , (2.82)

(K,K′) =
(

K1,K
′

1

)
◦
(

1Xλ′ × i∂I2 × 1I , 1X′
λ′
× i∂I2 × 1I

)
. (2.83)

Let (∆,∆′) : fλ′ × 1I2 → t be a morphism defined by(
∆,∆

′
)

=
(

K1|Xλ′×I2×{1},K
′

1|X′
λ′×I2×{1}

)
. (2.84)



Strong shape theory of continuous maps 83

In this case, by (2.80), (2.84) and (2.85) we have(
∆,∆

′
)
◦
(

1X
λ
′ × i∂I2 , 1X′

λ
′
× i∂I2

)
=

(
∆|Xλ′×∂I2 ,∆

′

|X′
λ
′×∂I2}

)
=

(
K1|X

λ
′×I2×{1},K

′

1|X′
λ
′×I2×{1}

)
= (σλ, σ

′
λ) ◦

(
pλλ′ × 1∂I2 , p′

λλ′
× 1∂I2

)
. (2.85)

Therefore, (2.72) is fulfilled.
By (2.81) there is a fiber homotopy (Λ,Λ′) : f × 1∂I2 × 1I × 1I → t such that(

Λ|X×∂I2×I×{0},Λ
′

|X′×∂I2×I×{0}

)
= (K,K′) ◦ (pλ′ × 1∂I2 × 1I , p

′
λ′ × 1∂I2 × 1I) , (2.86)(

Λ|X×∂I2×I×{1},Λ
′

|X′×∂I2×I×{1}

)
=
(

Γ2,Γ
′

2

)
, (2.87)(

Λ|X×∂I2×∂I×{t},Λ
′

|X′×∂I2×∂I×{t}

)
=
(

Λ|X×∂I2×∂I×{0},Λ
′

|X′×∂I2×∂I×{0}

)
. (2.88)

Let (M,M′) : f × 1∂I3 × 1I → t be a morphism defined by

M (x, , u, v, s, t) =

 Λ (x, u, v, t, s) , if (u, v) ∈ ∂I2

K1 (pλ′ (x) , u, v, t) , if s = 0
Γ (x, u, v, t) , if s = 1,

(2.89)

M′ (x′, , u, v, s, t) =


Λ′ (x′, u, v, t, s) , if (u, v) ∈ ∂I2

K
′

1 (p′λ′ (x
′) , u, v, t) , if s = 0

Γ′ (x′, u, v, t) , if s = 1.
(2.90)

Note that by (2.76), (2.87) and (2.88) the mappings M and M′ are well defined. Let
(

∆2,∆
′

2

)
:

f × 1I3 → t be a morphism defined by

∆2 (x, u, v, s) = ∆1 (pλ′′ (x) , u, v) , (2.91)

∆
′

2 (x′, u, v, s) = ∆
′

1 (p′λ′′ (x
′) , u, v) . (2.92)

On the other hand,(
M|X×∂I3×{0},M

′

|X′×∂I3×{0}

)
=
(

∆2,∆
′

2

)
◦ (1X × 1∂I3 , 1X × 1∂I3) . (2.93)

Indeed, let t = 0 and consider three cases:

1. If (u, v) ∈ ∂I2, then

(M (x, , u, v, s, 0) ,M′ (x′, , u, v, s, 0)) = (Λ (x, u, v, 0, s) ,Λ′ (x′, u, v, 0, s)) =

(Λ (x, u, v, 0, 0) ,Λ′ (x′, u, v, 0, 0)) = (K (pλ′ (x) , u, v, 0) ,K′ (p′λ′ (x
′) , u, v, 0)) =(

∆1 (pλ′′ (x) , u, v) ,∆
′

1 (p′λ′′ (x
′) , u, v)

)
=
(

∆2 (x, u, v, s) ,∆
′

2 (x′, u, v, s)
)
. (2.94)
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2. If s = 0, then

(M (x, , u, v, 0, 0) ,M′ (x′, , u, v, 0, 0)) = (K (pλ′′ (x) , u, v, 0) ,K′ (p′λ′′ (x
′) , u, v, 0)) =(

∆1 (pλ′′ (x) , u, v) ,∆
′

1

(
p
′

λ′′ (x
′) , u, v

))
=
(

∆2 (x, u, v, 0) ,∆
′

2 (x′, u, v, 0)
)
. (2.95)

3. If s = 1, then

(M (x, , u, v, 1, 0) ,M′ (x′, , u, v, 1, 0)) =
(

∆1 (x, u, v, 0) ,∆
′

1 (x′, u, v, 0)
)

=(
∆1 (pλ′′ (x) , u, v) ,∆

′

1 (p′λ′′ (x
′) , u, v)

)
=
(

∆2 (x, u, v, 1) ,∆
′

2 (x′, u, v, 1)
)
. (2.96)

By lemma 2.4 the morphism (1X × i∂I3 , 1X′ × i∂I3) : f × 1∂I3 → f × 1I3 is a fiber cofibration and
so by (2.94) there exists a fiber homotopy (N,N′) : f × 1I3 × 1I → t such that(

N|X×∂I3×{0},N
′

|X′×∂I3×{0}

)
=
(

∆2,∆
′

2

)
, (2.97)

(M,M′) = (N,N′) ◦ (1X × 1∂I3 × 1I , 1X × 1∂I3 × 1I) . (2.98)

Let (Γ,Γ′) : fλ × 1I3 → t be morphisms defined by

Γ (x, u, v, s) = N (x, u, v, s, 1) , (2.99)

Γ′ (x′, u, v, s) = N′ (x, u, v, s, 1) . (2.100)

Now we will show that for the fiber homotopy (Γ,Γ′) the (2.71) and (2.72) are fulfilled. Indeed,

(Γ (x, , u, v, 0) ,Γ′ (x′, , u, v, 0)) = (N (x, u, v, 0, 1) ,N′ (x′, u, v, 0, 1)) =(
K1 (pλ′′ (x) , u, v, 1) ,K

′

1 (p′λ′′ (x
′) , u, v, 1)

)
= (∆ (pλ′ (x) , u, v) ,∆′ (p′λ′ (x

′) , u, v)) =

((∆ ◦ (pλ′ × 1I3)) (x, u, v) , (∆′ ◦ (p′λ′ × 1I3)) (x′, u, v)) , (2.101)

(Γ (x, , u, v, 1) ,Γ′ (x′, , u, v, 1)) = (N (x, u, v, 1, 1) ,N′ (x′, u, v, 1, 1)) =

(M (x, , u, v, 1, 1) ,M′ (x′, , u, v, 1, 1)) = (Θ (x, u, v) ,Θ′ (x′, u, v)) . (2.102)

Moreover, if (u, v) ∈ ∂I2, then

(Γ (x, , u, v, t) ,Γ′ (x′, , u, v, t)) = (N (x, u, v, t, 1) ,N′ (x′, u, v, t, 1)) =

(M (x, , u, v, t, 1) ,M′ (x′, , u, v, t, 1)) = (Λ (x, , u, v, 1, 0) ,Λ′ (x′, , u, v, 1, 0)) . (2.103)

Therefore, (Γ (x, , u, v, t) ,Γ′ (x′, , u, v, t)) do not depend on t whenewer (u, v) ∈ ∂I2. q.e.d.
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3 Strong fiber shape category

Let MorCM be the category of continuous maps of compact metric spaces. By theorem 3.11
of [Ba7], for each f ∈ MorCM there exist the inverse sequences X = {Xn, pn,n+1, N}, X′ ={
X
′

n, p
′

n,n+1, N
}

and a system f = {fn, 1N} : X→ X′ such that:

1. X = lim←−X, X = lim←−X′, f = lim←− f ;

2. Xn and X
′

n are compact ANR-spaces;

3. {p′n} ◦ f = {fn, 1N} ◦ {pn}, where p = {pn} : X → X and q = {qn} : X ′ → X′ are the inverse
limits of X and X′, respectively.

On the other hand, by [Ba7], any inverse limit in the category MorCM is a resolution and so
each continuous map f ∈ MorCM admits a compact ANR-resolution (p,p′) : f → f , where f
is an inverse sequence of compact ANR-maps. By this fact, in this section we will construct the
category CH(tow −MorCM) of inverse sequences of continuous maps of compact metric spaces
and coherent homotopy classes of coherent mappings of inverse sequences.

Let f =
{
fn, (pn,n+1, p

′
n,n+1) ,N

}
and g =

{
gm, (qm,m+1, q

′
n,n+1) ,N

}
be inverse sequences in

the category MorCM. The system (ϕ,ϕ′) =
{

(ϕm, ϕ
′
m) ,

(
ϕm,m+1, ϕ

′
m,m+1

)
, ϕ
}

: f → g is
called a coherent morphism, if ϕ : N → N is an increasing function, (ϕm, ϕ

′
m) : fϕ(m) → gm and(

ϕm,m+1, ϕ
′
m,m+1

)
: fϕ(m+1) × 1I → gm are morphisms such that(

ϕm,m+1 (x, 0) , ϕ′m,m+1 (x′, 0)
)

=
(
ϕm
(
pϕ(m),ϕ(m+1) (x)

)
, ϕ′m

(
p′ϕ(m),ϕ(m+1) (x′)

))
, (3.1)(

ϕm,m+1 (x, 1) , ϕ′m,m+1 (x′, 1)
)

=
(
qm,m+1 (ϕm+1 (x)) , q′m,m+1

(
ϕ′m+1 (x′)

))
. (3.2)

Let (ϕ,ϕ′), (ψ,ψ′) : f → g be two coherent morphisms. We will say that they are coherent
homotopic if there exists a coherent morphism

(Θ,Θ′) =
{(

Θm,Θ
′

m

)
,
(

Θm,m+1,Θ
′

m,m+1

)
,Θ
}

: f × 1I → g (3.3)

such that Θ (m) ≥ ϕ (m) , ψ (m) for each m ∈ N and the following is fulfilled(
Θm+1 (x, 0) ,Θ

′

m+1 (x′, 0)
)

=
(
ϕm
(
pϕ(m),Θ(m) (x)

)
, ϕ′m

(
p′ϕ(m),Θ(m) (x′)

))
, (3.4)(

Θm+1 (x, 1) ,Θ
′

m+1 (x′, 1)
)

=
(
ψm
(
pϕ(m),Θ(m) (x)

)
, ψ′m

(
p′ϕ(m),Θ(m) (x′)

))
, (3.5)(

Θm,m+1 (x, s, 0) ,Θ
′

m,m+1 (x, s, 0)
)

=(
Θm

(
pΘ(m),Θ(m+1) (x) , s

)
,Θ
′

m

(
p′Θ(m),Θ(m+1) (x′) , s

))
, (3.6)

(
Θm,m+1 (x, s, 1) ,Θ

′

m,m+1 (x, s, 1)
)

=
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(
qm,m+1 (Θm+1 (x) , s) , q

′

m,m+1

(
Θ
′

m+1 (x′) , s
))

, (3.7)

(
Θm,m+1 (x, 0, t) ,Θ

′

m,m+1 (x, 0, t)
)

=(
ϕm,m+1

(
pϕ(m+1),Θ(m+1) (x) , t

)
, ϕ′m,m+1

(
p′ϕ(m+1),Θ(m+1) (x′) , t

))
, (3.8)

(
Θm,m+1 (x, 1, t) ,Θ

′

m,m+1 (x, 1, t)
)

=(
ψm,m+1

(
pψ(m+1),Θ(m+1) (x) , t

)
, ψ′m,m+1

(
p′ψ(m+1),Θ(m+1) (x′) , t

))
. (3.9)

In this case, we will use the notation (Θ,Θ′) : (ϕ,ϕ′) ∼= (ψ,ψ′).
Let [(ϕ,ϕ′)] be the equivalent class of the coherent morphism (ϕ,ϕ′). Denote the category

of all inverse sequences of continuous maps of compact metric spaces and coherent homotopy classes
[(ϕ,ϕ′)] of a coherent morphisms (ϕ,ϕ′) by CH (tow −MorCM). Let CH (tow −MorANR)
be the full subcategory of the category CH (tow −MorCM), the objects of which are inverse
sequences of ANR-maps.

Theorem 3.1. If (p,p′) = {(pλ, p′λ) } : f → f is a strong fiber ANR-expansion of a continuous
map f : X → X ′ of compact metric spaces, then for each coherent morphism (ϕ,ϕ′) : f → g,
where g ∈ CH (tow −MorANR), there exists a coherent morphism (Ψ,Ψ′) : f → g such that
(ϕ,ϕ′) is a coherent homotopic to (Ψ,Ψ′) ◦ (p,p′).

Proof. Consider any index m ∈ N and the corresponding morphisms (ϕm, ϕ
′
m) : f → gm. By the

property SF1) of (p,p′) : f → f there exist ψ̃ (m) ∈ N and morphisms
(
ψ̃m, ψ̃

′
m

)
: fψ̃(m) → gm such

that (ϕm, ϕ
′
m) ∼=

(
ψ̃m, ψ̃

′

m

)
◦
(
pψ̃(m), p

′
ψ̃(m)

)
. Let

(
Θm,Θ

′

m

)
: f × 1I → gm be a corresponding

homotopy, i.e. (
Θm (x, 0) ,Θ

′

m (x′, 0)
)

= (ϕm (x) , ϕ′m (x′)) , (3.10)(
Θm (x, 1) ,Θ

′

m (x′, 1)
)

=
(
ψ̃m

(
pψ̃(m)

)
(x) , ψ̃

′

m

(
p′
ψ̃(m)

)
(x′)

)
. (3.11)

Consider the homotopies
(

Θm,Θ
′

m

)
,
(

Θm+1,Θ
′

m+1

)
,
(
ϕm,m+1, ϕ

′
m,m+1

)
: f × 1I → gm. Let(

Γm,m+1,Γ
′

m,m+1

)
: f × 1∂I × 1I → gm be a morphism defined by

(
Γm,m+1(x, s, t),Γ

′

m,m+1(x′, s, t)
)

=


(

Θm(x, t),Θ
′

m(x′, t)
)
, ifs = 0(

qm,m+1Θm+1(x, t), q′m,m+1Θ
′

m+1(x′, t)
)
, ifs = 1.

(3.12)
In this case, by (3.10), (3.11), (3.1) and (3.2) we have(

Γm,m+1|X×∂I×{0} ,Γ
′

m,m+1|X′×∂I×{0}

)
=
(
ϕm,m+1|X×∂I×{0}, ϕ

′
m,m+1|X′×∂I×{0}

)
. (3.13)
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On the other hand, (1X × i∂I , 1X′ × i∂I) : f ×1∂I → f ×1I is a fiber cofibration and so there exists

a fiber homotopy
(

Γ̃m,m+1, Γ̃
′

m,m+1

)
: f × 1I × 1I → gm such that(

Γ̃m,m+1|X×∂I×{0}, Γ̃
′

m,m+1|X′×∂I×{0}

)
=
(
ϕm,m+1, ϕ

′
m,m+1

)
(3.14)(

Γm,m+1,Γ
′

m,m+1

)
=
(

Γ̃m,m+1, Γ̃
′

m,m+1

)
◦ (1X × i∂I , 1X′ × i∂I) . (3.15)

Note that by (3.15), (3.12) and (3.11),(
Γ̃m,m+1 (x, 0, 1) , Γ̃

′

m,m+1 (x′, 0, 1)
)

=
(

Γm,m+1 (x, 0, 1) ,Γ
′

m,m+1 (x′, 0, 1)
)

=(
Θm (x, 1) ,Θ

′

m (x′, 1)
)

=
(
ψ̃m

(
pψ̃(m)

)
(x) , ψ̃

′

m

(
p′
ψ̃(m)

)
(x′)

)
, (3.16)(

Γ̃m,m+1 (x, 1, 1) , Γ̃
′

m,m+1 (x′, 1, 1)
)

=
(

Γm,m+1 (x, 1, 1) ,Γ
′

m,m+1 (x′, 1, 1)
)

=(
qm,m+1Θm+1 (x, 1) , q′m,m+1Θ

′

m+1 (x′, 1)
)

=((
qm,m+1 ◦ ψ̃m+1 ◦ pψ̃(m)

)
(x) ,

(
q′m,m+1 ◦ ψ̃

′

m+1 ◦ p′ψ̃(m)

)
(x′)

)
. (3.17)

Let
(
ϕ̃m,m+1, ϕ̃

′
m,m+1

)
: f × 1I → gm be a morphism given by(

ϕ̃m,m+1 (x, t) , ϕ̃′m,m+1 (x′, t)
)

=
(

Γ̃m,m+1 (x, t, 1) , Γ̃
′

m,m+1 (x′, t, 1)
)
. (3.18)

Consider n = max
(
ψ̃ (m) , ψ̃ (m+ 1)

)
and define a morphism (σn, σ

′
n) : fn × 1I → gm by the

following formula
(σn (x, s, t) , σ′n (x′, s, t)) =

=


((
ψ̃m ◦ pψ̃m(m)(x)

)
,
(
ψ̃′m ◦ p′ψ̃′m(m)

(x′)
))

, if t = 0((
qm,m+1 ◦ ψ̃m+1 ◦ pψ̃m(m)(x)

)
,
(
q′m,m+1 ◦ ψ̃′m+1 ◦ p′ψ̃′m(m)

(x′)
))

, if t = 1.
(3.19)

In this case, by (3.18), (3.19), (3.16) and (3.17), it is clear that(
ϕ̃m,m+1|X×∂I , ϕ̃

′
m,m+1|X′×∂I

)
=(

ϕ̃m,m+1, ϕ̃
′
m,m+1

)
◦ (1X × i∂I , 1X′ × i∂I) =

(σn, σ
′
n) · (pn × i∂I , p′n × i∂I) . (3.20)

Therefore, by the property SF2) of (p,p′) : f → f , there exist n′ ∈ N, which will be denoted by

ψ̃ (m,m+ 1), and
(
ψ̃m,m+1, ψ̃

′

m,m+1

)
: fψ̃(m,m+1) × 1I → gm such that

(
ψ̃m,m+1, ψ̃

′

m,m+1

)
◦
(

1Xψ̃(m,m+1)
× i∂I , 1X′

ψ̃(m,m+1)

× i∂I
)

=
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(σn, σ
′
n) ◦

(
pn,ψ̃(m,m+1) × i∂I , p

′
n,ψ̃(m,m+1)

× i∂I
)
, (3.21)(

ϕ̃m,m+1, ϕ̃
′

m,m+1

)
∼=
(
ψ̃m,m+1, ψ̃

′

m,m+1

)
·
(
pψ̃(m,m+1), p

′
ψ̃(m,m+1)

)
(rel {f × 1∂I}) . (3.22)

Let ψ (m,m+ 1) = max
n≤m

{
ψ̃ (n, n+ 1)

}
, then ψ : N → N will be an increasing function. Define

the morphisms
(
ψm, ψ

′

m

)
: fψ(m) × 1I → gm and

(
ψm,m+1, ψ

′

m,m+1

)
: fψ(m+1) × 1I → gm by the

following way (
ψm, ψ

′

m

)
=
(
ψ̃m, ψ̃

′

m

)
◦
(
pψ̃(m),ψ(m), p

′
ψ̃(m),ψ(m)

)
, (3.23)(

ψm,m+1, ψ
′

m,m+1

)
=
(
ψ̃m,m+1, ψ̃

′

m,m+1

)
◦
(
pψ̃(m,m+1),ψ(m+1) × 1I , p

′
ψ̃(m,m+1),ψ(m+1)

× 1I

)
.

(3.24)
By (3.23), (3.21), (3.19) and (3.23),(

ψm,m+1 (x, 0) , ψ
′

m,m+1 (x′, 0)
)

=((
ψ̃m,m+1 ◦

(
pψ̃(m,m+1),ψ(m+1) × 1I

))
(x, 0) ,

(
ψ̃
′

m,m+1 ◦
(
p′
ψ̃(m,m+1),ψ(m+1)

× 1I

))
(x′, 0)

)
=

((
σn ◦

(
p
n,ψ̃(m,m+1)

× 1I

)
◦

(
p
ψ̃(m,m+1),ψ(m+1)

× 1I

))
(x, 0),

(
σ
′
n ◦

(
p
′
n,ψ̃(m,m+1)

× 1I

)
◦

(
p
′
ψ̃(m,m+1),ψ(m+1)

× 1I

)
(x
′
, 0)

))
=

(
σn
(
pn,ψ(m+1) (x) , 0

)
, σ′n

(
p′n,ψ(m+1) (x′) , 0

) )
=((

ψ̃m ◦ pψ̃(m),n

) (
pn,ψ(m+1) (x)

)
,
(
ψ̃
′

m ◦ p
′

ψ̃(m),n

)(
p′n,ψ(m+1) (x′)

) )
=((

ψ̃m ◦ pψ̃(m),ψ(m+1)

)
(x) ,

(
ψ̃
′

m ◦ p′ψ̃(m),ψ(m+1)

)
(x′)

)
=((

ψ̃m ◦ pψ̃(m),ψ(m)

) (
pψ(m),ψ(m+1) (x)

)
,
(
ψ̃′m ◦ p′ψ̃(m),ψ(m)

)(
p′ψ(m),ψ(m+1) (x′)

))
=(

ψm
(
pψ(m),ψ(m+1) (x)

)
, ψ
′

m

(
p′ψ(m),ψ(m+1) (x′)

) )
. (3.25)

(
ψm,m+1 (x, 1) , ψ

′

m,m+1 (x′, 1)
)

=((
ψ̃m,m+1 ◦

(
pψ̃(m,m+1),ψ(m+1) × 1I

))
(x, 1) ,

(
ψ̃
′

m,m+1 ◦
(
p′
ψ̃(m,m+1),ψ(m+1)

× 1I

))
(x′, 1)

)
=

((
σn ◦

(
p
n,ψ̃(m,m+1)

× 1I

)
◦

(
p
ψ̃(m,m+1),ψ(m+1)

× 1I

))
(x, 1) ,

(
σ
′
n ◦

(
p
′
n,ψ̃(m,m+1)

× 1I

)
◦

(
p
′
ψ̃(m,m+1),ψ(m+1)

× 1I

)) (
x
′
, 1

))
=

(
σn
(
pn,ψ(m+1) (x) , 1

)
, σ′n

(
p′n,ψ(m+1) (x′) , 1

) )
=((

qm,m+1 ◦ ψ̃m+1 ◦ pψ̃(m+1),n

) (
pn,ψ(m+1) (x)

)
,
(
q′m,m+1 ◦ ψ̃

′

m+1 ◦ p′ψ̃(m+1),n

)(
p′n,ψ(m+1) (x′)

) )
=((

qm,m+1 ◦ ψ̃m+1 ◦ pψ̃(m),ψ(m+1)

)
(x, 0) ,

(
q′m,m+1 ◦ ψ̃

′

m+1 ◦ p′ψ̃(m),ψ(m+1)

)
(x′, 0)

)
=
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(
(qm,m+1 ◦ ψm+1) (x, 0) ,

(
q′m,m+1 ◦ ψ

′

m+1

)
(x′, 0)

)
. (3.26)

Therefore, we construct the system (Ψ,Ψ′) =
{(
ψm, ψ

′

m

)
,
(
ψm,m+1,ψ

′

m,m+1,

)}
: f → g which

satisfies the following conditions:(
ψm,m+1 (x, 0) , ψ′m,m+1 (x′, 0)

)
=
((
ψm ◦ pψ(m),ψ(m+1)

)
(x) ,

(
ψ′m · p′ψ(m),ψ(m+1)

)
(x′)

)
, (3.27)(

ψm,m+1 (x, 1) , ψ′m,m+1 (x′, 1)
)

=
(
(qm,m+1 ◦ ψm+1) (x) ,

(
q′m,m+1 · ψ′m+1

)
(x′)

)
. (3.28)

So (Ψ,Ψ′) is a coherent morphism.
Let show that the morphism (ϕ,ϕ′) is a coherent homotopic to (ψ,ψ′) ◦ (p,p′). For this we

should construct a system

(Θ,Θ′) =
{(

Θm,Θ
′

m

)
,
(

Θm,m+1,Θ
′

m,m+1

)
,Θ
}

: f × 1I → g

such that (
Θm (x, 0) ,Θ

′

m (x′, 0)
)

= (ϕm (x) , ϕ′m (x′)) , (3.29)(
Θm (x, 1) ,Θ

′

m (x′, 1)
)

=
(
ψm
(
pψ(m) (x)

)
, ψ′m

(
p′ψ(m) (x′)

))
, (3.30)(

Θm,m+1 (x, s, 0) ,Θ
′

m,m+1 (x, s, 0)
)

=
(

Θm (x, s) ,Θ
′

m (x′, s)
)
, (3.31)(

Θm,m+1 (x, s, 1) ,Θ
′

m,m+1 (x, s, 1)
)

=(
qm,m+1 (Θm+1 (x) , s) , q′m,m+1

(
Θ
′

m+1 (x′) , s
))

, (3.32)(
Θm,m+1 (x, 0, t) ,Θ

′

m,m+1 (x, 0, t)
)

=
(
ϕm,m+1 (x, t) , ϕ′m,m+1 (x′, t)

)
, (3.33)(

Θm,m+1 (x, 1, t) ,Θ
′

m,m+1 (x, 1, t)
)

=(
ψm,m+1

(
pψ(m+1) (x) , t

)
, ψ′m,m+1

(
p′ψ(m+1) (x′) , t

))
. (3.34)

Note that for each n ∈ N we have defined a morphism
(

Θm,Θ
′

m

)
: f × 1I → gm and by (3.10),

(3.11) and (3.23), (
Θm (x, 0) ,Θ

′

m (x′, 0)
)

= (ϕm (x) , ϕ′m (x′)) , (3.35)(
Θm (x, 1) ,Θ

′

m (x′, 1)
)

=
((
ψ̃m · pψ̃(m)

)
(x) ,

(
ψ̃′m · p′ψ̃(m)

)
(x′)

)
=((

ψ̃m · pψ̃(m),ψ(m)

) (
pψ(m) (x)

)
,
(
ψ̃′m · p′ψ̃(m),ψ(m)

)(
p′ψ(m) (x′)

))
=((

ψm · pψ(m)

)
(x) ,

(
ψ′m · p′ψ(m)

)
(x′)

)
. (3.36)
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So it remains to construct a morphism
(

Θm+1,Θ
′

m+1

)
: f × 1I × 1I → gm. Consider a homotopy(

∆m+1,∆
′

m+1

)
: f × 1I × 1I → gm which realizes (3.22), i.e(

∆m (x, s, 0) ,∆
′

m (x′, s, 0)
)

=
(
ϕ̃m,m+1 (x, s) , ϕ̃′m,m+1 (x′, s)

)
, (3.37)(

∆m (x, s, 1) ,∆
′

m (x′, s, 1)
)

=(
ψ̃m,m+1

(
pψ̃(m,m+1) (x) , s

)
, ψ̃′m,m+1

(
p′
ψ̃(m,m+1)

(x′) , s
))

, (3.38)(
∆m (x, s, t) ,∆

′

m (x′, s, t)
)

=
(

∆m (x, s, 0) ,∆
′

m (x′, s, 0)
)
, ∀ s ∈ ∂I. (3.39)

Let
(

Θ̃m+1, Θ̃
′

m+1

)
: f × 1I × 1I → gm is given by the formula:(

Θ̃m+1 (x, s, t) , Θ̃
′

m+1 (x′, s, t)
)

=

=

{(
Γ̃m,m+1 (x, t, 2s) , Γ̃′m,m+1 (x′, t, 2s)

)
, if 0 ≤ 2s ≤ 1

2

(∆m,m+1 (x, t, 2s− 1) ,∆m,m+1 (x′, t, 2s− 1)) , if 1
2 ≤ 2s ≤ 1.

(3.40)

By (3.18) and (3.37) the morphism
(

Θ̃m+1, Θ̃
′

m+1

)
is well defined. On the other hand, by

(1.38) for each x ∈ X and x′ ∈ X ′ the homotopies Θ̃m+1 and Θ̃
′

m+1 are constant on the subspaces
{x}×{0}×

[
1
2 ; 1
]
, {x}×{1}×

[
1
2 ; 1
]

and {x′}×{0}×
[

1
2 ; 1
]
, {x}×{0}×

[
1
2 ; 1
]
, respectively. Consider

the quotient space Z of I×I, where {0}×
[

1
2 ; 1
]

and {1}×
[

1
2 ; 1
]

are identified with the points
(
0, 1

2

)
and

(
1, 1

2

)
, respectively. In this case, there exists a morphism

(
Θ̄m,m+1, Θ̄

′

m,m+1

)
: f × 1Z → gm

such that (
Θ̃m,m+1, Θ̃

′

m,m+1

)
=
(

Θ̄m,m+1, Θ̄
′

m,m+1

)
◦ (1X × q, 1X × q) , (3.41)

where q : I × I → Z is the quotient map. Let k : I × I → Z be a homeomorphism such that

k (s, 0) = q
(s

2
, 0
)
, (3.42)

k (s, 1) = q
(s

2
, 1
)
, (3.43)

k (s, 1) = (0, t) , (3.44)

k (s, 1) = (0, t) . (3.45)

Let
(

Θm,m+1,Θ
′

m,m+1

)
: f × 1Z → gm be a morphism given by(

Θm,m+1 (x, s, t) ,Θ
′

m,m+1 (x′, s, t)
)

=
(

Θ̄m,m+1 (x, k (s, t)) , Θ̄
′

m,m+1 (x′, k (s, t))
)
. (3.46)

In this case, by (3.46), (3.42), (3.43), (3.41), (3.40) and (3.12),(
Θm,m+1 (x, s, 0) ,Θ

′

m,m+1 (x′, s, 0)
)

=
(

Θ̄m,m+1 (x, k (s, 0)) , Θ̄
′

m,m+1 (x′, k (s, 0))
)

=
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(
Θ̄m,m+1

(
x, q

(s
2
, 0
))

, Θ̄
′

m,m+1

(
x′, q

(s
2
, 0
)))

=
(

Θ̃m,m+1

(
x,
s

2
, 0
)
, Θ̃
′

m,m+1

(
x′,

s

2
, 0
) )

=(
Γ̃m,m+1 (x, 0, s) , Γ̃′m,m+1 (x′, 0, s)

)
=
(

Θm (x, s) ,Θ
′

m (x′, s)
)
, (3.47)

(
Θm,m+1 (x, s, 1) ,Θ

′

m,m+1 (x′, s, 1)
)

=
(

Θ̄m,m+1 (x, k (s, 1)) , Θ̄
′

m,m+1 (x′, k (s, 1))
)

=(
Θ̄m,m+1

(
x, q

(s
2
, 1
))

, Θ̄
′

m,m+1

(
x′, q

(s
2
, 1
)))

=
(

Θ̃m,m+1

(
x,
s

2
, 1
)
, Θ̃′m,m+1

(
x′,

s

2
, 1
) )

=(
Γ̃m,m+1 (x, 1, s) , Γ̃′m,m+1 (x′, 1, s)

)
= ((qm,m1

·Θm+1) (x, s) , (qm,m1
·Θ′m+1) (x′, s)) . (3.48)

On the other hand, by (3.46), (3.44), (3.45), (3.41), (3.13) and (3.38),(
Θm,m+1 (x, 0, t) ,Θ

′

m,m+1 (x′, 0, t)
)

=
(

Θ̄m,m+1 (x, k (0, t)) , Θ̄
′

m,m+1 (x′, k (0, t))
)

=(
Θ̄m,m+1 (x, 0, t) , Θ̄

′

m,m+1 (x′, 0, t)
)

=
(

Θ̃m,m+1 (x, 0, t) , Θ̃′m,m+1 (x′, 0, t)
)

=(
Γ̃m,m+1 (x, t, 0) , Γ̃′m,m+1 (x′, t, 0)

)
=
(
ϕm,m+1 (x, s) , ϕ′m,m+1 (x′, s)

)
, (3.49)

(
Θm,m+1 (x, 1, t) ,Θ

′

m,m+1 (x′, 1, t)
)

=
(

Θ̄m,m+1 (x, k (1, t)) , Θ̄
′

m,m+1 (x′, k (1, t))
)

=(
Θ̄m,m+1 (x, 1, t) , Θ̄

′

m,m+1 (x′, 1, t)
)

=
(

Θ̃m,m+1 (x, 1, t) , Θ̃′m,m+1 (x′, 1, t)
)

=(
∆m,m+1 (x, t, 1) ,∆′m,m+1 (x′, t, 1)

)
=
(
ψ̃m,m+1

(
pψ̃(m,m+1) (x) , s

)
, ψ̃
′

m,m+1

(
p
′

ψ̃(m,m+1)
(x′) , s

))
=

((
ψ̃m,m+1 ◦

(
p
ψ̃(m,m+1)(),ψ(m+1)

× 1I

) (
pψ(m+1)(x), s

))
,

(
ψ̃
′
m,m+1 ◦

(
p
′
ψ̃(m,m+1),ψ(m+1)

× 1I

)) (
p
′
ψ(m+1)(x

′
), s

))
=

(
ψm,m+1

(
pψ(m+1)(x), s

)
, ψ′m,m+1

(
p′ψ(m+1)(x

′), s
))

. (3.50)

Therefore, (Θ,Θ′) : (ϕ,ϕ′)→ (ψ,ψ′) · (p,p′). q.e.d.

Theorem 3.2. If (p,p′) =
{(
pλ, p

′

λ

) }
: f → f is a strong fiber ANR-expansion of a continuous

map f : X → X ′ of compact metric spaces, (ϕ,ϕ′) : f → g is a coherent morphism, where
g ∈ CH (tow −MorCM) and

(
Ψ1,Ψ

′
1

)
,
(
Ψ2,Ψ

′
2

)
: f → g are coherent morphisms such that

(ϕ,ϕ′) is coherent homotopic to
(
Ψ1,Ψ

′
1

)
◦ (p,p′) and

(
Ψ2,Ψ

′
2

)
◦ (p,p′), then the morphisms(

Ψ1,Ψ
′
1

)
and

(
Ψ2,Ψ

′
2

)
are coherent homotopic.

Proof. Let (
Θ1,Θ

′1
)

=
{(

Θ1
m,Θ

′1
m

)
,
(

Θ1
m,m+1,Θ

′1
m,m+1

)
,Θ
}
, (3.51)

and (
Θ2,Θ

′2
)

=
{(

Θ2
m,Θ

′2
m

)
,
(

Θ2
m,m+1,Θ

′2
m,m+1

)
,Θ
}
, (3.52)
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are the corresponding coherent homotopies. For each index m ∈ N consider the morphisms(
Θ1
m,Θ

′1
m

)
,
(

Θ2
m,Θ

′2
m

)
: f × 1I → gm. By definition, in this case we have(

Θ1
m (x, 0) ,Θ

′1
m (x′, 0)

)
= (ϕm (x) , ϕ′m (x′)) , (3.53)(

Θ1
m (x, 1) ,Θ

′1
m (x′, 1)

)
=
(
ψ1
m

(
pψ1(m)

)
(x) , ψ

′1
m

(
p′ψ1(m)

)
(x′)

)
, (3.54)(

Θ2
m (x, 0) ,Θ

′2
m (x′, 0)

)
= (ϕm (x) , ϕ′m (x′)) , (3.55)(

Θ2
m (x, 1) ,Θ

′2
m (x′, 1)

)
=
(
ψ2
m

(
pψ2(m)

)
(x) , ψ2

m

(
p′ψ2(m)

)
(x′)

)
. (3.56)

Let n = max
(
ψ1 (m) , ψ2 (m)

)
and define

(
ψ̃1
m, ψ̃

′1
m

)
,
(
ψ̃2
m, ψ̃

′2
m

)
: fn → gm by(

ψ̃1
m (x) , ψ̃

′1
m (x′)

)
=
(
ψ1
m

(
pψ1(m),n

)
(x) , ψ

′1
m

(
p′ψ1(m),n

)
(x′)

)
, (3.57)(

ψ̃2
m (x) , ψ̃

′2
m (x′)

)
=
(
ψ2
m

(
pψ2(m),n

)
(x) , ψ

′2
m

(
p′ψ2(m),n

)
(x′)

)
. (3.58)

Let
(

Θ̃m, Θ̃
′

m

)
: f × 1I → gm be the fiber homotopy defined by

(
Θ̃m (x, t) , Θ̃

′

m (x′, t)
)

=


(

Θ1
m (x, 1− 2t) ,Θ

′1
m (x′, 1− 2t)

)
, if 0 ≤ t ≤ 1

2(
Θ2
m (x, 2t− 1) ,Θ

′2
m (x′, 2t− 1)

)
, if 1

2 ≤ t ≤ 1.
(3.59)

By (3.53) and (3.55)
(

Θ̃m, Θ̃
′

m

)
is well-defined. On the other hand, by (3.54), (3.56), (3.57) and

(3.58) it is a homotopy between the morphisms
(
ψ̃1
m, ψ̃

′1
m

)
◦ (pn, p

′
n) and

(
ψ̃2
m, ψ̃

′2
m

)
◦
(
pn, p

′

n

)
.

Indeed, (
Θ̃m (x, 0) , Θ̃

′

m (x′, 0)
)

=
(

Θ1
m (x, 1) ,Θ

′1
m (x′, 1)

)
=(

ψ1
m

(
pψ1(m)

)
(x) , ψ

′1
m

(
p
′

ψ1(m)

)
(x′)

)
=(

ψ1
m

(
pψ1(m),n

)
(pn (x)) , ψ

′1
m

(
p
′

ψ1(m),n

)(
p
′

n (x′)
))

=(
ψ̃1
m (pn (x)) , ψ̃

′1
m

(
p
′

n (x′)
))

, (3.60)(
Θ̃m (x, 1) , Θ̃

′

m (x′, 1)
)

=
(

Θ2
m (x, 1) ,Θ

′2
m (x′, 1)

)
=(

ψ2
m

(
pψ2(m)

)
(x) , ψ

′2
m

(
p
′

ψ2(m)

)
(x′)

)
=(

ψ2
m

(
pψ2(m),n

)
(pn (x)) , ψ

′2
m

(
p
′

ψ2(m),n

)(
p
′

n (x′)
))

=(
ψ̃2
m (pn (x)) , ψ̃

′2
m

(
p
′

n (x′)
))

. (3.61)
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Therefore, by the property SF2) of (p,p′) : f → f , there exist ∆̃ (m) ≥ n and a morphism(
∆̃m, ∆̃

′

m

)
: f∆̃(m) → gm such that(

∆̃m (x, 0) , ∆̃
′

m (x′, 0)
)

=
(
ψ̃1
m

(
pn,∆̃(m)

)
(x) , ψ̃

′1
m

(
p′
n,∆̃(m)

)
(x′)

)
=((

ψ1
m ◦ pψ1(m),n

) (
pn,∆̃(m)

)
(x) ,

(
ψ
′1
m ◦ p′ψ1(m),n

)(
p′
n,∆̃(m)

)
(x′)

)
=(

ψ1
m

(
pψ1(m),∆̃(m)

)
(x) , ψ

′1
m

(
p′
ψ1(m),∆̃(m)

)
(x′)

)
, (3.62)(

∆̃m (x, 1) , ∆̃
′

m (x′, 1)
)

=
(
ψ̃2
m

(
pn,∆̃(m)

)
(x) , ψ̃

′2
m

(
p′
n,∆̃(m)

)
(x′)

)
=((

ψ2
m ◦ pψ2(m),n

) (
pn,∆̃(m)

)
(x) ,

(
ψ
′2
m ◦ p′ψ2(m),n

)(
p′
n,∆̃(m)

)
(x′)

)
=(

ψ2
m

(
pψ2(m),∆̃(m)

)
(x) , ψ

′2
m

(
p′
ψ2(m),∆̃(m)

)
(x′)

)
. (3.63)(

∆̃m, ∆̃
′

m

)
◦
(
p∆̃(m), p

′
∆̃(m)

)
∼=
(

Θ̃m, Θ̃
′

m

)
(rel {f × 1∂I}) . (3.64)

Consider the fiber homotopies(
Θ1
m,m+1,Θ

′1
m,m+1

)
,
(

Θ2
m,m+1,Θ

′2
m,m+1

)
: f × 1I → gm. (3.65)

By definition, in this case we have(
Θ1
m,m+1 (x, s, 0) ,Θ

′1
m,m+1 (x, s, 0)

)
=
(

Θ1
m (x, s) ,Θ

′1
m (x′, s)

)
, (3.66)(

Θ1
m,m+1 (x, s, 1) ,Θ

′1
m,m+1 (x, s, 1)

)
=(

qm,m+1

(
Θ1
m+1 (x) , s

)
, q
′

m,m+1

(
Θ
′1
m (x′) , s

))
, (3.67)(

Θ1
m,m+1 (x, 0, t) ,Θ

′1
m,m+1 (x, 0, t)

)
=
(
ϕm,m+1 (x, t) , ϕ′m,m+1 (x′, t)

)
, (3.68)(

Θ1
m,m+1 (x, 1, t) ,Θ

′1
m,m+1 (x, 1, t)

)
=(

ψ1
m,m+1

(
pψ1(m+1) (x) , t

)
, ψ
′1
m,m+1

(
p′ψ1(m+1) (x′) , t

))
, (3.69)(

Θ2
m,m+1 (x, s, 0) ,Θ

′2
m,m+1 (x, s, 0)

)
=
(

Θ2
m (x, s) ,Θ

′2
m (x′, s)

)
, (3.70)(

Θ2
m,m+1 (x, s, 1) ,Θ

′2
m,m+1 (x, s, 1)

)
=(

qm,m+1

(
Θ2
m+1 (x) , s

)
, q′m,m+1

(
Θ
′2
m (x′) , s

))
, (3.71)(

Θ2
m,m+1 (x, 0, t) ,Θ

′2
m,m+1 (x, 0, t)

)
=
(
ϕm,m+1 (x, t) , ϕ′m,m+1 (x′, t)

)
, (3.72)
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(
Θ2
m,m+1 (x, 1, t) ,Θ

′2
m,m+1 (x, 1, t)

)
=(

ψ2
m,m+1

(
pψ2(m+1) (x) , t

)
, ψ
′2
m,m+1

(
p′ψ2(m+1) (x′) , t

))
. (3.73)

Let
(

Θ̃m,m+1, Θ̃
′

m,m+1

)
: f × 1I × 1I → gm be a fiber homotopy defined by(

Θ̃m,m+1 (x, s, t) , Θ̃
′

m.m+1 (x′, s, t)
)

=

=


(

Θ1
m,m+1 (x, 1− 2s, t) ,Θ

′1
m,m+1 (x′, 1− 2s, t)

)
, if 0 ≤ s ≤ 1

2(
Θ2
m,m+1 (x, 2s− 1, t) ,Θ

′2
m,m+1 (x′, 2s− 1, t)

)
, if 1

2 ≤ s ≤ 1.
(3.74)

By (3.68) and (3.72), it is well-defined. Let
(

Λm,Λ
′

m

)
: f × 1I × 1I → gm be a fiber homotopy

which realizes (3.64), i.e.(
Λm (x, s, 0) ,Λ

′

m (x′, s, 0)
)

=
(

∆̃m

(
p∆̃(m) (x) , s

)
, ∆̃
′

m

(
p′

∆̃(m)
(x′) , s

))
, (3.75)(

Λm (x, s, 1) ,Λ
′

m (x′, s, 1)
)

=
(

Θ̃m (x, s) , Θ̃
′

m (x′, s)
)
, (3.76)(

Λm (x, s, t) ,Λ
′

m (x′, s, t)
)

=
(

Λm (x, s, 0) ,Λ
′

m (x′, s, 0)
)
, if s ∈ ∂I. (3.77)

Define the fiber homotopy
(

Γ̃m,m+1, Γ̃
′

m,m+1

)
: f × 1I × 1I → gm by the formula(

Γ̃m,m+1 (x, s, t) , Γ̃
′

m,m+1 (x′, s, t)
)

=
(Λm(x, s, 3t),Λ′m(x′, s, 3t)) if 0 ≤ s ≤ 1

3(
Θ̃,m+1(x, s, 3t− 1), Θ̃′m,m+1(x′, s, 3t− 1)

)
if 1

3 ≤ s ≤
2
3(

qm,m+1Λm(x, s, 3− 3t), q′m,m+1Λ′m(x′, s, 3− 3t)
)

if 2
3 ≤ s ≤ 1.

(3.78)

By (3.76), (3.74), (3.66), (3.70), (3.59), (3.66), (3.70) and (3.77) the morphism
(

Γ̃m,m+1, Γ̃
′

m,m+1

)
is well defined. On the other hand, by (3.77), for each x ∈ X and x′ ∈ X ′ the homotopies Γ̃m,m+1

and Γ̃
′

m,m+1 are constant on the subspaces {x}×{0}×
[
0; 1

3

]
, {x}×{1}×

[
0; 1

3

]
, {x}×{0}×

[
2
3 ; 1
]
,

{x}×{1}×
[

2
3 ; 1
]

and {x′}×{0}×
[
0; 1

3

]
, {x′}×{1}×

[
0; 1

3

]
, {x′}×{0}×

[
2
3 ; 1
]
, {x′}×{1}×

[
2
3 ; 1
]
,

respectively. Consider the quotient space Z of I × I, where {0} ×
[
0; 1

3

]
, {1} ×

[
0; 1

3

]
, {0} ×

[
2
3 ; 1
]

and {1} ×
[

2
3 ; 1
]

are identified with the points
(
0, 1

3

)
,
(
1, 1

3

)
,
(
0, 2

3

)
and

(
1, 2

3

)
, respectively. In this

case, there exists a morphism
(

Γ̄m,m+1, Γ̄
′

m,m+1

)
: f × 1Z → gm such that(

Γ̃m,m+1, Γ̃
′

m,m+1

)
=
(

Γ̄m,m+1, Γ̄
′

m,m+1

)
◦ (1X × q, 1X × q) , (3.79)

where q : I × I → Z is a quotient map. Let k : I × I → Z be a homeomorphism such that

k (s, 0) = q (s, 0) , (3.80)
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k (s, 1) = q (s, 1) , (3.81)

k (s, 1) = q

(
0,

1 + t

3

)
, (3.82)

k (s, 1) = q

(
1,

1 + t

3

)
. (3.83)

Let
(

Γm,m+1,Γ
′

m,m+1

)
: f × 1Z → gm be a morphism given by(

Γm,m+1 (x, s, t) ,Γ
′

m,m+1 (x′, s, t)
)

=
(

Γ̄m,m+1 (x, k (s, t)) , Γ̄
′

m,m+1 (x′, k (s, t))
)
. (3.84)

Let k = max
(

∆̃ (m) , ∆̃ (m+ 1)ψ1 (m) , ψ2 (m)
)

. Define

(σk (x, s, t) , σ′k (x′, s, t)) =

=



(
∆̃m

(
p∆̃m,l

(x), s
)
, ∆̃′m

(
p′

∆̃m,l
(x′), s

))
, if t = 0(

qm,m+1∆̃m+1

(
p∆̃m+1,l

(x), s
)
, q′m+1∆̃′m+1

(
p′

∆̃m+1,l
(x′), s

))
, if t = 1(

ψ1
m,m+1

(
pψ1

m,m+1,k
(x), s

)
, ψ
′1
m,m+1

(
p′
ψ
′1
m,m+1,k

(x), s

))
, if s = 0(

ψ2
m,m+1

(
pψ2

m,m+1,k
(x), s

)
, ψ
′2
m,m+1

(
p′
ψ
′2
m,m+1,k

(x), s

))
, if s = 1.

(3.85)

In this case, we have(
Γm,m+1|X×∂I2 ,Γ

′

m,m+1X′×∂I2

)
= (σk, σ

′
k) ◦ (pk × 1∂I2 , p′k × 1∂I2) . (3.86)

Therefore, by theorem 2.5 there exist ∆̃ (m,m+ 1) ≥ k and a morphism
(

∆̃m,m+1, ∆̃
′

m,m+1

)
:

f∆̃(m,m+1) × 1I × 1I → gm such that(
∆̃m,m+1|X∆̃(m,m+1)×∂I2 , ∆̃′m,m+1|X′

∆̃(m,m+1)
×∂I2

)
=

(σ,σ
′
k) ◦

(
pk,∆̃(m,m+1) × 1∂I2 , p′

k,∆̃(m,m+1)
× 1∂I2

)
, (3.87)(

∆̃m,m+1, ∆̃
′

m,m+1

)
◦
(
p∆̃(m,m+1) × 1I2 , p′

∆̃(m,m+1)
× 1I2

)
∼=

∼=
(

Γm,m+1,Γ
′

m,m+1

)
(rel {f × 1∂I2}) . (3.88)

Let ∆ (m+ 1) = max
n≤m

{
∆̃ (n, n+ 1)

}
, then ∆ : N → N will be an increasing function. Now define

the morphisms (
∆m,∆

′

m

)
: f∆((m) × 1I → gm, (3.89)(

∆m,m+1,∆
′

m,m+1

)
: f∆((m) × 1I × 1I → gm, (3.90)
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by the following(
∆m,∆

′

m

)
=
(

∆̃m, ∆̃
′

m

)
◦
(
p∆̃(m),∆((m) × 1I , p

′
∆̃(m),∆((m)

× 1I

)
, (3.91)(

∆m,m+1,∆
′

m,m+1

)
=(

∆̃m,m+1, ∆̃
′

m,m+1

)
◦
(
p∆̃(m+1),∆((m+1) × 1I2 , p′

∆̃(m+1),∆((m+1)
× 1I2

)
. (3.92)

In this case, we can show that
(
Θ1,Θ

′1
)

=
{(

Θ1
m,Θ

′1
m

)
,
(

Θ1
m,m+1,Θ

′1
m,m+1,Θ

)}
is a coherent

homotopy between the morphisms
(
Ψ1,Ψ

′

1

)
and

(
Ψ2,Ψ

′

2

)
. q.e.d.

By theorems 3.1 and 3.2, if (p1,p
′
1) : f → f1 and (p2,p

′
2) : f → f2 are two expansions of f ,

then there exists a unique isomorphism (i, i′) : f1 → f2 such that

[(i, i′)] ◦ (p1,p
′
1) = (p2,p

′
2). (3.93)

For each f, g ∈MorCM consider the set of all triples

((p,p′), (q,q′), [(Ψ,Ψ′)]) , (3.94)

where (p,p′) : f → f and (q,q′) : g → g are strong fiber expansions and [(ψ,ψ′)] is a coherent ho-
motopy class of the coherent morphism (Ψ,Ψ′) : f → g. Two such triples(

(p1,p
′
1), (q1, q′1),

[(
Ψ1,Ψ

′

1

)])
and

(
(p2,p

′
2), (q2, q′2),

[(
Ψ2,Ψ

′

2

)])
are called equivalent if

[(j, j′)] ◦
[(

Ψ1,Ψ
′

1

)]
=
[(

Ψ2,Ψ
′

2

)]
◦ [(i, i′)] , (3.95)

where [(i, i′)] : f1 → f2 and [(j, j′)] ; g1 → g2 are isomorphisms. The equivalence class of the triple
((p,p′), (q,q′), [(Ψ,Ψ′)]) is denoted by F : f → g and is called a strong shape morphism from
f to g. Let the category SSh (MorCM) of all continuous maps of compact metric spaces and all
strong shape morphisms be called the strong fiber shape category of MorCM.

Remark. Note that there exists a functorial relation between the strong fiber shape category and
fiber shape category.
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